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Abstract

Genetic case-control association studies often include data on clinical covariates, such as body mass index (BMI), smoking
status, or age, that may modify the underlying genetic risk of case or control samples. For example, in type 2 diabetes, odds
ratios for established variants estimated from low–BMI cases are larger than those estimated from high–BMI cases. An
unanswered question is how to use this information to maximize statistical power in case-control studies that ascertain
individuals on the basis of phenotype (case-control ascertainment) or phenotype and clinical covariates (case-control-
covariate ascertainment). While current approaches improve power in studies with random ascertainment, they often lose
power under case-control ascertainment and fail to capture available power increases under case-control-covariate
ascertainment. We show that an informed conditioning approach, based on the liability threshold model with parameters
informed by external epidemiological information, fully accounts for disease prevalence and non-random ascertainment of
phenotype as well as covariates and provides a substantial increase in power while maintaining a properly controlled false-
positive rate. Our method outperforms standard case-control association tests with or without covariates, tests of gene x
covariate interaction, and previously proposed tests for dealing with covariates in ascertained data, with especially large
improvements in the case of case-control-covariate ascertainment. We investigate empirical case-control studies of type 2
diabetes, prostate cancer, lung cancer, breast cancer, rheumatoid arthritis, age-related macular degeneration, and end-stage
kidney disease over a total of 89,726 samples. In these datasets, informed conditioning outperforms logistic regression for
115 of the 157 known associated variants investigated (P-value = 161029). The improvement varied across diseases with a
16% median increase in x2 test statistics and a commensurate increase in power. This suggests that applying our method to
existing and future association studies of these diseases may identify novel disease loci.
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Introduction

Genetic risk in case-control studies often varies as a function of

body mass index (BMI), age or other clinical covariates. For

example, in a recent type 2 diabetes study, 23 of 29 established

associated SNPs had higher odds ratios when estimated from low-

BMI cases than from high-BMI cases (average odds ratios 1.182

versus 1.128) [1]. Higher genetic risk in early-onset cases has been

shown empirically for prostate and breast cancers [2,3], and has

also been hypothesized for other diseases [4,5]. Covariates such as

smoking status may affect genetic risk in several diseases including

lung cancer [6], and information on these covariates may alter the

expected level of genetic risk carried by a case (or control) sample.

The question of how to optimally incorporate these covariates in

case-control association studies is a function of the study design.

We divide the set of possible study designs into three classes,

random ascertainment (cohort or cross-section designs), case-

control ascertainment that ascertains individuals based on

phenotype, and case-control-covariate ascertainment that ascer-

tains on both phenotype and clinical covariate (as in age-matched

studies). When individuals are randomly ascertained, conditioning

on covariates associated with phenotype can increase study power

by reducing phenotypic variance [7]. It is well known that

conditioning on covariates in ascertained data can result in a

dramatic loss in power [8,9,10,11] , and several approaches to

address this issue in case-control studies have previously been

described [12,13,14]. In addition, a paper just published in Nature

Genetics [15] has made a valuable contribution by highlighting this

issue for both genetic covariates and a clinical covariate (gender) in

case-control studies, although that paper did not propose a new

method to solve this important problem. Matched case-control-

covariate ascertainment is commonly used as a means of

preventing ascertainment induced power loss by matching the

covariate distribution in cases and controls [13], but standard

conditioning provides no gain in power in this case [16]. show that

another type of case-control-covariate ascertainment, oversam-

pling low-risk (low-BMI) cases and high-risk (high-BMI) controls

can increase power with standard association tests, but standard

statistical tests may not capture all of the available power increase.

As we show below, previous approaches such as logistic or linear

regression (Armitage trend test [17]) with or without covariates,

marginal or joint tests of gene x covariate interaction [18,19],

comparing early-onset cases to controls [5,20], analyzing cases

only [21], and a semi-parametric approach designed to address

case-control ascertainment issues [12], all fail to capture the

increase in statistical power that is available when there exists

external epidemiological data describing disease prevalence as a

function of the covariate. Some of these previous methods lose

power under case-control ascertainment, and all fail to capture the

available power gain under case-control-covariate ascertainment.

Here, we investigate a new approach to estimating the

parameters of the liability threshold (LT) model [22], a classical

modeling approach that has recently been used in studies of

heritability and risk prediction [23,24,25]. Previously, we devel-

oped a parameter estimation method for the LT model in the case

of genetic covariates (known associated variants) for which samples

are randomly ascertained, and showed that it improved power

relative to logistic regression with or without conditioning [26]. In

this work, we develop a new parameter estimation method for

studies with randomly or non-randomly ascertained clinical covari-

ates that leverages the epidemiological literature to fit LT

parameters. By estimating covariate effect sizes externally from

the case-control study data this approach prevents ascertainment-

induced power loss, while maintaining the power gain achieved by

reducing phenotypic variance. We show by simulation that our

approach to fitting liability threshold models and computing case-

control association statistics outperforms previously developed

approaches. Our method produces a large improvement in power

under case-control-covariate ascertainment, a study design that

previous methods do not address [12,13,17,26]. Our method also

outperforms previous methods under case-control ascertainment,

because covariate effect sizes can be estimated more accurately

using external epidemiological information. We demonstrate both

analytically and empirically that our association statistic produces

the correct null distribution.

We apply the method to empirical case-control ascertained and

case-control-covariate ascertained studies for seven different

diseases: type 2 diabetes, prostate cancer, lung cancer, post-

menopausal breast cancer, rheumatoid arthritis, age-related

macular degeneration, and end-stage kidney disease over a total

of 89,726 samples. Our method uses published prevalence data (as

a function of clinical covariates) for each disease to estimate the LT

parameters. The published prevalence data are an external source

of information not utilized by the other statistical tests.

In these datasets, which include case-control and case-control-

covariate designs, informed conditioning outperforms marginal

logistic regression for 115 of the 157 known associated variants

investigated (P-value = 161029) with a 16% median increase in x2

test statistic and a commensurate increase in power, attaining a

substantial and highly statistically significant improvement in

association statistics. We conclude that application of informed

conditioning to future case-control-covariate ascertained and case-

control ascertained association studies of these diseases, or other

Clinical Covariates in Case-Control Studies
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diseases with analogous effects of age, BMI, or other covariates on

genetic risk, has the potential to substantially increase the power of

disease gene discovery.

Methods

Liability threshold model
The model is defined by Q~

XJ

j~1

cj(tj{�ttj)zmze, where

e = cg+N(0,1), and an individual is a disease case (z = 1) if and

only if Q$0 and is a control otherwise (z = 0) [22]. Here Q is an

unobserved underlying quantitative trait called the liability. The cj

parameters quantify the effect of each covariate on the liability

scale and m is an affine parameter that determines the disease

prevalence at the covariate means �ttj by f ~W({m), where W is the

normal cumulative distribution function and W({m) is P(x.2m).

For diseases with prevalence less than 50% m will be negative. tj is

the value of covariate j, �ttj is the population mean of covariate j, g is

the genotype of the candidate SNP (normalized to mean 0), c is the

effect size (equal to 0 under the null model) and N(0,1) is the

standard normal distribution. The proportion of variance

explained by covariate j on the liability scale is
(cj
:sj )

2

1z
P

j

(cj
:sj )

2

where sj is the standard deviation of covariate j.

Overview of method
Our method employs a three-step procedure. First, we fit the

parameters cj and m via a method (LTPub) that uses published

prevalence information. Second, we compute the posterior mean

residual liability E(eDz,t) for each individual given the case-control

status z and the values of the clinical covariates t. Missing

covariates in cases are assigned the mean value of the covariate in

cases and similarly for controls. Third, we perform linear

regression of the posterior mean residual liability against the

genotypes of the SNPs we wish to test while optionally

incorporating additional covariates such as principal components

(PCs), generalizing the EIGENSTRAT method [27]. Each of

these steps is described in detail below. All methods described here

are implemented in the LTSOFT software (see Web Resources).

We note that there are important differences between our statistic

and existing statistics such as those currently implemented in R

(see Text S1 in File S1).

The approach is best illustrated by an example. We consider a

simulated BMI-matched case-control-covariate type 2 diabetes (T2D)

dataset. In T2D, prevalence is greater in the population of individuals

with high BMI. Our toy example contains 3,000 cases and 3,000

controls, half with BMI = 24 and half with BMI = 35. (This gives a

mean BMI of 29.5 and standard deviation of 5.5, similar to the real

T2D studies analyzed below.) We first fit the parameters of the

liability threshold model using published information on prevalence

as a function of BMI. This procedure is described in detail below and

gives a liability model Q = c(t2�tt)+m+e where c = 0.08, m = 21.44,
�tt = 26.5, e = cg+N(0,1). We choose c = 0.1 and give g a minor allele

frequency of 0.5. In this case t is BMI and �tt is the mean BMI. The

parameter c is the coefficient of BMI in liability model. An individual

is disease case if Q$0 and a control if Q,0.

We next compute the posterior mean value of the residual

quantitative trait adjusted for BMI according to equations (1) and

(2) below (Figure 1 and Table 1). Since the liability Q and e are

normally distributed, the posterior distribution of e is the tail of

normal. In Figure 1 this distribution is shown for the low-BMI and

high-BMI cases. A BMI = 24 T2D case has a more extreme

posterior mean value of e, (2.09) than a BMI = 35 T2D case (1.37),

because for BMI = 24 the lower contribution from BMI implies

that a larger contribution from other factors (e.g. genetic factors) is

needed to exceed the liability threshold. Similarly, a BMI = 35

T2D control has a slightly more extreme value (20.36) than a

BMI = 24 T2D control (20.10), in order to stay below the liability

threshold despite the higher contribution from BMI. In contrast,

in standard linear regression all cases have the same value (e.g. 1)

and all controls have the same value (e.g. 0).

We test a causal variant with minor allele frequency (maf) 0.5 in

the population and an effect size on the liability scale of c = 0.1

corresponding to an estimated odds ratio of 1.25 in the BMI = 24

cases and 1.16 in the BMI = 35 individuals (see Simulations). We

compute association statistics for the liability threshold (LT) model

using these posterior mean values (Table 1). Our LT statistic is a

score test equivalent to a linear regression likelihood ratio test

where the alternate likelihood is the likelihood of the posterior

mean of the residual of the liability (E(e|z,t)) under a linear

regression model with an unconstrained genotype effect size.

Under the null the genotype effect size is equal to 0.

In these simulations, the likelihood ratio test has an expected x2(1

dof) = 30.3 (P = 3.761028), which is genome-wide significant. It is

notable that applying logistic regression (LogR) directly to case-

control phenotypes produces a less significant statistic—either with

or without conditioning on BMI, which has virtually no effect since

cases and controls are BMI-matched. Logistic Regression of case-

control status against genotype has an expected x2(1 dof) = 27.9

(P = 1.361027), and an expected x2(1 dof) = 27.9 (P = 1.361027)

when using BMI as a covariate. Neither of these statistics is genome-

wide significant. Studies with case-control-covariate ascertainment

often attempt to match on a covariate, such as BMI in this example

in order to prevent a loss of power that can come from stratified

testing [13]. While it is true that the conditioned logistic regression

test did not lose power relative to logistic regression, neither test

obtained the power available to the LT statistic. This is because

when there is no difference in the distribution of BMI between cases

and controls logistic regression and other previous approaches

[12,13,17,26] will set the effect size of BMI to 0, while the LT

statistic uses external epidemiological information to estimate the

effect size of BMI.

Author Summary

This work describes a new methodology for analyzing
genome-wide case-control association studies of diseases
with strong correlations to clinical covariates, such as age
in prostate cancer and body mass index in type 2 diabetes.
Currently, researchers either ignore these clinical covari-
ates or apply approaches that ignore the disease’s
prevalence and the study’s ascertainment strategy. We
take an alternative approach, leveraging external preva-
lence information from the epidemiological literature and
constructing a statistic based on the classic liability
threshold model of disease. Our approach not only
improves the power of studies that ascertain individuals
randomly or based on the disease phenotype, but also
improves the power of studies that ascertain individuals
based on both the disease phenotype and clinical
covariates. We apply our statistic to seven datasets over
six different diseases and a variety of clinical covariates. We
found that there was a substantial improvement in test
statistics relative to current approaches at known associ-
ated variants. This suggests that novel loci may be
identified by applying our method to existing and future
association studies of these diseases.

Clinical Covariates in Case-Control Studies
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Estimating LT parameters from published data (LTPub)
We begin with published prevalence information over a range

of values of clinical covariates. One means of finding the liability

threshold parameters to minimize the normalized least-squares

error

X
j

X
tj

fcj ,m(tj){f (tj)

fcj ,m(tj)zf (tj)

 !2

where fcj ,m(tj)~W({cj(tj{�ttj){m) is prevalence at covariate value

tj under the liability threshold model with parameters cj and m, and

f (tj) is the published prevalence at value tj . For example, prostate

cancer is known to have prevalence 2%, 8%, 14% for individuals of

age 60, 70, 80, respectively (f (60)~0:02, f (70)~0:08, f (80)~0:14)

(see Text S1 in File S1). In this case, the parameters c
1

= 0.05 and

m = 22.5 imply prevalence values of 2%, 7%, 16% for individuals of

age 60, 70, 80 (based on standard normal probabilities for e$2.0,

e$1.5, e$1.0 under the null model c = 0, and a mean age of 50). In

order to avoid the binary search procedure we transform the search

from the disease scale to the liability scale minimizing

X
j

X
tj

{cj(tj{�ttj){m{W{1f (tj)
� �2

Figure 1. Illustration of liability threshold model: simulated T2D example. The posterior mean of e for low-BMI and high-BMI cases is the
expected value of e given that it exceeds c(t2�tt)+m. High-BMI cases have a lower posterior mean relative to low-BMI cases since they require a smaller
contribution from genetics to exceed the threshold in the liability threshold model.
doi:10.1371/journal.pgen.1003032.g001

Table 1. Illustration of liability threshold model: simulated
T2D example.

Posterior mean E(e|z,t) Allele frequency

Cases, BMI = 24 2.09 0.55

Cases, BMI = 35 1.37 0.53

Controls, BMI = 24 20.10 0.50

Controls, BMI = 35 20.36 0.49

Posterior mean value of residual quantitative trait e (adjusted for BMI) as a
function of BMI and case-control status. We also list allele frequencies specified
in simulated genotype data.
doi:10.1371/journal.pgen.1003032.t001

Clinical Covariates in Case-Control Studies
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which can be solved analytically. We note that when t refers to age, the

fact that some individuals will die before age ti is irrelevant to our

computations, since the liability threshold model is defined for

individuals who are alive at a given age t. The mean �tt was chosen as

the mean from the available prevalence data, and mis-specifying the

mean has little effect (see Text S1 and Table S1 in File S1). For each

disease studied, the source of prevalence data for each covariate is

given in Text S1 in File S1.

When there are multiple covariates we treat them as indepen-

dent but infer the parameters jointly. For example, in T2D we fit

the parameters c1 for age, c2 for BMI, and m (the affine term)

simultaneously. We believe that this is a reasonable approximation

so long as the covariates are only weakly correlated, as association

statistics are robust to small deviations in model parameters (see

below). When clinical covariates are highly correlated, treating

them as independent will reduce power. It is possible to avoid this

power loss by fitting the LT model with prevalence data for both

covariates simultaneously (e.g. specifying the prevalence of T2D at

all age/BMI pairs). For the datasets in this study, this was not

necessary, as the squared correlation was less than 0.026 for all

pairs of covariates.

Association test using posterior mean value of
underlying quantitative trait

The main idea is that instead of conducting an association test

using case-control phenotype z, we use the posterior mean E(eDz,t)
of the (unobserved) residual liability e. Thus,

E(ejz,t)~

ð?
{c(t{�tt){m

e
1ffiffiffiffiffiffi
2p
p exp

{e2

2

� �
de

, ð?
{c(t{�tt){m

1ffiffiffiffiffiffi
2p
p exp

{e2

2

� �
de if z~ 1,

ð1Þ

E(ejz,t)~

ð{c(t{�tt){m

{?

e
1ffiffiffiffiffiffi
2p
p exp

{e2

2

� �
de

, ð{c(t{�tt){m

{?

1ffiffiffiffiffiffi
2p
p exp

{e2

2

� �
de if z~ 0:

ð2Þ

When a study measures age at onset, or age and other covariates at

onset, then the precise point at which the threshold is crossed is

known, and E(eDz,t) = {c(t{�tt){m can be used. Our association

statistic is a measure of association between genotype g and

posterior mean residual liability E(eDz,t) across samples. We treat

E(eDz,t) as a continuous variable and perform linear regression,

computing the number of samples times the squared correlation

between g and E(eDz,t), employing a generalized Armitage trend

test [17], and generalizing EIGENSTRAT if PC covariates are

also used [27,28]. Although E(eDz,t) is not normally distributed,

the use of linear regression as opposed to logistic regression is

accepted practice in association studies [17,27,28]. Effect sizes are

returned on the liability scale and these can easily be converted to

odds ratios if desired (e.g. for meta-analysis) (see Text S1 in File

S1).

We show below that this is equivalent to the Score test, which is

also commonly used in genetic association studies [1,29,30]. We

write the prospective likelihood as a function of effect size c is

L(c)~ P
i

ðUi

Li

1ffiffiffiffiffiffi
2p
p exp

{(e{cgi)
2

2

 !
de

2
64

3
75,

where Li~{c(ti{�tt){m,Ui~? for cases and Li~{?,Ui~{

c(ti{�tt){m for controls. Thus,
L log L(c)

Lc

� �
c~0

~
X

i

ðUi

Li

egi

1ffiffiffiffiffiffi
2p
p exp

{e2

2

� �
de

,ðUi

Li

1ffiffiffiffiffiffi
2p
p exp

{e2

2

� �
de~

X
i

giE(eDzi,ti):

follows that the Score statistic is equal to the square of
X

i

gi

E(eDzi,ti) divided by its empirical variance, which is equivalent to

the liability threshold statistic and has the correct null distribution.

The retrospective likelihood is equal to this prospective likelihood

(see Text S1 in File S1). We show below that this statistic is robust

to parameter mis-estimation and maintains the correct null

distribution (see Results).

Results

Simulations
We generalized the simulations from the toy case-control-

covariate example for T2D above. These simulations used a BMI-

matched design, which is a special case of case-control-covariate

ascertainment. For each effect size c between 0.00 and 0.15, we

simulated independent datasets using the liability threshold model

with a single clinical covariate with parameters c = 0.08 and

m = 21.44. We refer to the clinical covariate as BMI, but the

simulations apply equally to other clinical covariates. We assumed

3,000 cases and 3,000 BMI-matched controls, half with BMI = 24

and half with BMI = 35. We considered a SNP with allele

frequency p = 0.50 in the general population. The estimated odds

ratio of the SNP increases with the effect size, and the estimated

odds ratio of individuals with BMI = 24 is larger than the

estimated odds ratio of individuals with BMI = 35 for every non-

zero effect size, consistent with Table 1. This is expected under the

LT model since cases with BMI = 24 will generally need more risk

alleles to reach Q$0. For each value of c, we simulated 1,000,000

independent datasets using pcase,24, pcontrol,24, pcase,35, pcontrol,35

based on the liability threshold model. Using these simulations, we

evaluated power and false-positive rate. We also considered non-

additive models, as well as the effect of mis-specifying the

parameters of the LT model.

Evaluation of power
We considered five different statistical tests: logistic regression

(LogR) using case-control phenotype, LogR using case-control

phenotype with BMI as covariate (LogR+Cov), a x2(2 dof) test for

main genetic effect and gene x BMI interaction (G+GxE) [18,19],

LogR comparing low-BMI cases to controls (LogRSub) [5,20],

and our association statistic (LT) using posterior mean residual

liability from the LT model (see Methods). We note that the x2(2

dof) statistic (G+GxE) is a likelihood ratio test comparing the null

model of no main genetic effect and no gene x BMI interaction to

the causal model with main genetic effect and gene x BMI

interaction.

For each test, the average x2 statistic is displayed in Table 2. We

see that the LT statistic produces an average improvement of 8.8%

in x2 statistics compared to LogR. The improvement is a function

It
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of BMI distribution, effect size, disease prevalence, minor allele

frequency, and study design. The G+GxE test loses power due to

the extra degree of freedom. The LogRSub test performs nearly as

well as the LogR test, showing that low-BMI cases contribute more

power than high-BMI cases.

In addition to these five main tests we considered two additional

tests: A x2(1 dof) statistic, which compares the null model of main

genetic effect only to the causal model with main genetic effect and

gene x BMI interaction, and is equal to the difference between

G+GxE and LogR statistics; a case-only logistic regression

comparing BMI = 24 to BMI = 35 [21]. These gene-environment

interaction tests had x2(1 dof) statistics less than 5.0 for all effect

sizes and are not considered further. Another approach, probit

regression [31], uses an underlying model which is equivalent to

the liability threshold model. However, probit regression does not

account for disease prevalence, the effect sizes of covariates

estimated from the epidemiological literature, or the ascertainment

scheme used by the study and therefore produces very different

statistics from the LT model (see Text S1 in File S1). Probit and

linear regression gave similar results to logistic regression over all

simulations and real datasets. This result was obtained both with

and without covariates.

Average x2 statistics are useful for comparison purposes, but do

not provide a formal assessment of power. We also performed

power calculations, computing the proportion of 1,000,000

simulations achieving the conventional GWAS cutoff for signifi-

cance at 5% level following correction for multiple testing of

P,561028. Results for a subset of methods are displayed in

Figure 2, indicating a 23% improvement in power for the LT

statistic. In all simulations the percent improvement in power is

substantially larger than the percent improvement in average x2

statistic. We caution that these results will vary as a function of the

ascertainment of BMI in the study. Furthermore, for any choice of

ascertainment strategy, these results may overstate the prospects

for improvement in real data, since simulated data and association

statistics were based on the same model and model parameters.

We repeated the above experiments under a range of

ascertainment schemes (random, case-control, case-control-covar-

iate) and effect sizes (see Text S1 and Table S2 in File S1). In all

experiments the LT statistic matched or outperformed all of the

other statistical tests while maintaining the correct null distribu-

tion. For randomly ascertained studies, there is no induced

correlation between genotype and clinical covariate and we do not

expect or observe an improvement in our method over the others

[7]. In many cases conditioning on BMI significantly decreased

power. Under case-control ascertainment strategies, covariates

correlated with case-control status will also be correlated with

associated genotypes [10]. Conditioning on these covariates can

therefore introduce biases and reduce power [9,10,11] as a

function of covariate effect size and disease prevalence (see Text

S1 and Table S3 in File S1). Our method performs better than

previous approaches including [12] (see below), because covariate

effect sizes can be estimated more accurately using external

epidemiological information. Matched case-control-covariate de-

signs, in which covariates are matched in some proportions

between cases and controls, may prevent conditioning from having

any effect in existing methods. Since the LT statistic uses

information from external epidemiological literature it can still

produce an improvement.

False-positive rate and correct null distribution
To investigate the properties of the LT statistic under the null

we computed the mean value in the simulations above when

c = 0.0. As seen in Table 2 this has the correct value of 1.00. In

addition it has the correct median, with lGC~1.00, 5.00% of tests

with P-value,0.05 and 1.00% of tests with P-value,0.01. We

applied Kolmogorov-Smirnov test [31] to determine if the LT

statistic differed significantly from a x2 (1 dof) distribution. The

two-tailed K-S test of the full distribution was not significant (P-

value = 0.34), nor was the K-S test restricted to the tail where the

LT statistic had x2.3.84 (P-value = 0.21). In order to further

investigate the extreme tail of the distribution we ran 108 tests

under the null and verified that 98 of the 108 tests (1026) had a P-

value,1026. The LT statistic is a score test when the parameters

are estimated correctly and will therefore have the correct null

distribution. We investigated the properties of the LT statistic

when the parameters were severely mis-estimated and found no

inflation (see Text S1 in File S1). Furthermore, since the LT

statistic is an ATT test between g and the posterior mean of the

residual of the liability E(eDz,t), it will not have an inflated false-

Table 2. Average x2 statistics for LT versus other approaches in simulated data.

c LogR LogR+Cov G+GxE LogRSub LT
OR
LBMI

OR
HBMI

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.06 11.27 11.27 9.69 10.60 12.11 1.15 1.10

0.07 14.61 14.61 12.86 13.72 15.77 1.17 1.12

0.08 18.43 18.43 16.52 17.32 19.97 1.20 1.13

0.09 23.11 23.12 21.04 21.66 25.03 1.23 1.15

0.10 27.88 27.89 25.73 26.21 30.34 1.25 1.17

0.11 33.45 33.47 31.15 31.38 36.48 1.28 1.19

0.12 39.77 39.80 37.51 37.24 43.46 1.31 1.20

0.13 45.92 45.95 43.64 42.89 50.29 1.34 1.22

0.14 52.74 52.78 50.55 49.11 57.79 1.37 1.24

0.15 59.63 59.68 57.89 55.60 65.55 1.39 1.26

For each statistic we display average results across 1,000,000 simulations, for various effect sizes c. All statistics are x2(1 dof). Logistic regression with an interaction term
(G+GxE) values been converted from x2(2 dof) to the equivalent x2(1 dof) value. At an effect size of 0 all statistics give the expected value under the null. OR LBMI is the
odds ratio computed from cases with BMI = 24. OR HBMI is the odds ratio for cases with BMI = 35.
doi:10.1371/journal.pgen.1003032.t002
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positive rate provided that E(eDz,t) does not have heavy tails or

extreme heteroscedasticity [32]. E(eDz,t) is the area under the tail

of a normal distribution and will therefore not have these

properties provided that the clinical covariate does not.

Logit disease model
The LT statistic assumes the same model used to generate the

data in the above experiments, and its increase in performance

over other methods may be driven by this fact. To examine this

possibility we conducted case-control study simulations under a

logit model as opposed to liability threshold model of disease used

above. We also performed simulations in which the LT parameters

were estimated from simulated epidemiological summary statistics.

In all cases, the LT statistic continued to outperform the other

methods by a similar margin (see Text S1 and Table S6 in File S1).

We conclude that leveraging external epidemiological data and

not the similarity of the generative model to the tested model

drives the increase in power.

Non-additive models
Our above simulations examine a range of alternatives

consistent with additivity on the liability scale. While data and

theory suggest that additivity explains most of the genetic variance

for a range of phenotypes [33], many researchers are interested in

a wider range of models involving gene x covariate interaction on

the liability scale. We simulated additional datasets in which we

added a positive or negative interaction term (see Text S1 and

Table S4 in File S1) and found that the relative performance of the

LT statistic depends on the direction of the interaction. Negative

interaction, such as the recently discovered coffee-GRIN2A

interaction in Parkinson’s disease [34], increases the power of

LT. Positive interaction, such those recently found for smoking

and lung cancer [35] decreases the power of LT (see Table S4 in

File S1). The G+GxE test outperformed the other statistical tests in

most of these simulations, although the LT statistic performed

better than G+GxE when the interaction term was negative.

Averaging across gene x covariate interactions in either direction,

LT outperformed LogR. This supports the use of LT instead of

LogR, even accounting for the possibility of gene x covariate

interaction on the liability scale.

Other statistical tests
Adjustment for informative covariates is not unique to genetics

and the problem of estimation from case-control data has received

considerable attention [10]. propose a weighted logistic regression

method (inverse-probability weighting) in the case of conditioning

on clinical variables in case-control ascertainment studies [9]. also

offer an efficient estimator for case-control ascertainment studies

in order to account for ascertainment-induced biases. In the case

of inverse-probability weighting, unbiased effect sizes are indeed

obtained, but it under-performed relative to the LT statistic in

simulations, with a 7% lower x2 than the LT statistic in the

simulations from Table 2 when c = 0.1 [12]. propose using a

retrospective likelihood to address case-control ascertainment

issues when conditioning on a covariates and implement a semi-

parametric test to incorporate the clinical covariates. In our case-

Figure 2. Power calculations for LogR, G+GxE, and LT approaches in simulated data. For each statistic we display power to attain
P,561028 based on 1,000,000 simulations of 3000 cases and 3000 controls, for various effect sizes c. The increase in power (ratio of y-axis values) for
LT versus LogR is 22.8% for c = 0.1, and 23.0% when computing average power across all values of c. For c= 0 the power was 5.0% for all statistics
when the P-value threshold is 0.05. G+GxE performs worse due to an extra degree of freedom.
doi:10.1371/journal.pgen.1003032.g002
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control simulations, the LT statistic outperformed this method (see

Text S1 in File S1). In the case of case-control-covariate designs

this semi-parametric test, as well as other previous approaches

[13,26], are not expected to improve power because they can not

leverage external epidemiological literature describing the clinical

covariates.

Mis-specification of model parameters
To investigate the sensitivity of the LT statistic to mis-specification

of model parameters, we performed additional simulations in which

we assumed model parameters that were different from those used to

simulate the data. We concluded that the LT statistic is robust to

deviations in model parameters (see Table S1 in File S1). However,

only analyses of empirical data can determine whether the liability

threshold model provides a good fit to real diseases.

Real datasets
Estimation of model parameters for real diseases. We

estimated parameters for each of the diseases using published

prevalence data as a function of the relevant covariates. For

example, for T2D we used prevalences 2%, 3%, 5%, 8%, 13%,

and 24% for BMIs 18, 21.5, 24.5, 27.5, 30.5, 35 respectively.

Using these data we fit the liability threshold model parameters so

as to minimize the squared error between the expected thresholds

and those specified by the model(see Methods). The values used to

fit the parameters and the sources of this information are given in

Text S1 in File S1. The inferred parameter values for each disease

studied are displayed in Table 3. These studies include both case-

control-covariate ascertainment as well as case-control ascertain-

ment strategies (see Table 4).

Type 2 diabetes datasets. We applied informed conditioning

to a case-control-covariate ascertained dataset of 5,051 T2D cases

and 3,529 controls from three Swedish cohorts (the Malmo

Preventive Project, Scania Diabetes Registry, and Botnia Study)

[16] genotyped on the Metabochip [36]. This study oversampled

low-BMI cases and younger cases, but did not explicitly match cases

and controls for BMI or age. The genotyped SNPs include 47 SNPs

identified by previous type 2 diabetes genome-wide association

studies (GWAS) [1]. T2D and BMI is a particularly compelling

example for analysis with the LT statistic, as we report in Table S9 of

ref. [1] that 23 of 29 T2D SNPs have higher effect size for low-BMI

versus high-BMI cases (P-value = 0.0003; average odds ratios 1.182

versus 1.128, P-value for heterogeneity not significant for most

individual SNPs). (Also see [37], 29 of 36 T2D SNPs have higher

effect size with average odds ratios 1.13 versus 1.06 for low-BMI

versus high-BMI cases). Individuals are clinically diagnosed with

T2D if their fasting glucose exceeds a specific level. The similarity

between an underlying liability and fasting glucose exceeding a

threshold further motivates the use of an LT model to analyze T2D.

We compared association statistics over these T2D data using four

approaches: LogR, LogR+Cov, logistic regression with an interaction

term (G+GxE), and LT. Logistic regression without high-BMI cases

(LogRSub) was not included since it contains strictly fewer individuals

and its performance is not expected to exceed LogR. The G+GxE

test underperformed relative to other methods in all datasets due to its

extra degree of freedom. This is expected since the SNPs were

discovered with a marginal test, and are therefore less likely to have

gene x covariate interactions on the liability scale. Results are

displayed in Table 4, Table 5, and Table S8 in File S1 and we see that

the sum of x2 statistics across all loci is 51% higher for LT than LogR.

Table 3. Inferred covariates and effect sizes on the liability scale.

Disease
%Variance
Explained LT Model for Q

T2D (Metabo) BMI = 14%, age = 6% 0.08*(BMI-26.5)+0.029*(age-50)-1.38

BMI = 15% 0.08*(BMI-26.5)-1.44

age = 9% 0.029*(age-50)-1.28

T2D (MEC) BMI = 14%, age = 4% 0.08*(BMI-26.5)+0.029*(age-50)-1.38

BMI = 15% 0.08*(BMI-26.5)-1.44

age = 5% 0.029*(age-50)-1.28

PC age = 14% 0.049*(age-50)-2.49

LC age = 2%,smoking = 76% 0.03*(age-50)+2.6*(smoking-0.25)-3.06

age = 17% 0.04*(age-50)-3.30

smoking = 51% 2.04*(smoking-0.25)-2.37

BC age = 8% 0.032*(age-50)-2.26

RA age = 6%, sex = 2% 0.022*(age-50)+0.32*(sex-0.5)-2.46

age = 6% 0.022*(age-50)-2.46

sex = 2% 0.32*(sex-0.5)-2.34

ESKD age = 15% 0.02*(age-50)-2.08

AMD age = 17%, BMI30 = 5% 0.03*(age-50)+0.61*(BMI30-0.30)-2.00

age = 11% 0.04*(age-50)-2.10

BMI30 = 6% 0.35*(BMI30-0.30)-1.72

LT model is the liability threshold model for each disease with parameters estimated using the LTPub method. For diseases with multiple covariates, models with all
covariates and each covariate separately are given. %Variance Explained is the fraction of variance explained on the liability scale in the study data for each of the
covariates in each of the diseases when all covariates are used in the model, and is specific to the distribution of covariates in each particular study. BMI30 is a binary
variable, which is 1 if an individual’s BMI is greater than 30 and 0 otherwise. Type 2 diabetes (T2D), prostate cancer (PC), lung cancer (LC), breast cancer (BC), rheumatoid
arthritis (RA), end-stage kidney disease (ESKD), and age-related macular degeneration (AMD).
doi:10.1371/journal.pgen.1003032.t003
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As expected under an LT model, the odds ratios computed from

individuals with low BMI are greater than those computed from

individuals with high BMI. The T2D LT models also use age as a

covariate and in the LTPub estimation method age and BMI were fit

jointly (see Methods). We reran the LTPub estimation fitting BMI

and age separately and found the improvements over LogR to be

32% and 18% respectively.

It is of interest to include non-European ancestries in studies of

T2D, because non-Europeans have higher T2D risk [38,39]. We

examined the performance of the same six statistics over of 6,142

cases and 7,403 controls genotyped at 19 known associated SNPs

from the Multiethnic Cohort (MEC) (African Americans, Latinos,

Japanese Americans, Native Hawaiians, and European Americans)

[38]. A potential concern is that risk SNPs identified in Europeans

may not be associated in other populations due to different LD

patterns, however, previous analyses have demonstrated that these

19 SNPs are consistently associated to T2D in all MEC ancestries

[38]. Results are displayed in Tables 4–5 and Table S9 in File S1.

We see that application of LT attains 26% higher x2 statistics than

LogR. We reran the LTPub estimation fitting BMI and age

separately and found the improvements over LogR to be 20% and

3% respectively.

The Metabochip study included a large number of low-BMI

cases as part of their ascertainment strategy whereas the MEC

study ascertained randomly with respect to BMI. Including low-

BMI cases increases the power of the Metabochip study since odds

ratios estimated from the population of low-BMI individuals will

be larger [16] (Table S9 of ref. [1]). This is predicted by the

liability threshold model since low-BMI cases require additional

factors (i.e. genetic factors) to exceed the threshold. In our

simulations (see Text S1 and Table S2 in File S1) the improvement

of LT over LogR was even greater with this ascertainment strategy

than it was in a standard case-control ascertainment strategy.

Thus, this strategy gives even greater performance of the LT

statistic relative to LogR because the low-BMI cases will be up-

weighted relative to the high-BMI cases. This is likely the cause of

the better performance of LT in Metabochip compared to the

MEC dataset.

For each T2D dataset, we simulated 100,000 datasets with the

same sample sizes, covariates, and case-control status as the real

datasets. We simulated a causal variant with effect size 0.1 and

minor allele frequency 0.1 under the LT model for T2D and

computed statistics for LT and LogR. The percent improvements

were 40%+21% for Metabochip and 22%+6% for MEC similar

to those in the real datasets (see Table S5 in File S1).

Prostate cancer dataset. We applied informed conditioning

to a case-control-covariate ascertained dataset of 10,501 prostate

cancer cases and 10,831 controls (with 7 of 8 cohorts age-matched)

from the NCI Breast and Prostate Cancer Cohort Consortium

(BPC3) that were genotyped at 39 SNPs identified by previous

prostate cancer GWAS [40]. We previously reported that 32 of 39

SNPs had a higher odds ratio for early-onset cases versus late-onset

cases (Table S3 of ref. [40]), which is unlikely to be due to chance

(P,0.0001) and motivates the question of whether informed

conditioning of prostate cancer might increase power.

We compared association statistics using four approaches:

LogR, LogR with age as covariate, logistic regression with an

interaction term (G+GxE), and LT. As was the case for T2D,

G+GxE underperformed relative to the other methods due to its

extra degree for freedom. Results are displayed in Tables 4–5 and

Tables S10–S11. We see that application of LT attains 7% higher

sum of x2 statistics than LogR and that the odds ratios computed

from early-onset cases are greater than those computed from late-

Table 4. Summary information for all datasets.

Disease Ascertainment Cases Controls SNPs ORL.ORH LTPub.LogR

T2D (Metabo) Case-Control-Covariate 5051 3529 47 37 37

T2D (MEC) Case-Control-Covariate 6142 7403 19 15 16

PC Case-Control-Covariate 10501 10831 39 32 30

LC Case-Control-Covariate 6952 6661 16 13 12

BC Case-Control-Covariate 9619 12244 20 12 11

RA Case-Control 5024 4281 21 16 15

ESKD Case-Control 1030 1025 1 1 1

AMD Case-Control-Covariate 473 1103 2 2 2

SUM n/a 37840 40416 165 128 128

ORL.ORH is the number of SNPs in which the odds ratio of low risk cases (e.g. low-BMI) is greater than then odds ratio computed from the high risk group (e.g. high-
BMI). LTPub.LogR is the number of SNPs in the dataset for which LTPub exceeded the LogR statistic. There are 9 SNPs shared between the two T2D sets. In total there
are 157 unique SNPs and 115 unique SNPs with LTPub.LogR. Type 2 diabetes (T2D), prostate cancer (PC), lung cancer (LC), breast cancer (BC), rheumatoid arthritis (RA),
end-stage kidney disease (ESKD), and age-related macular degeneration (AMD).
doi:10.1371/journal.pgen.1003032.t004

Table 5. Summary statistics across all datasets.

Disease LTPub LogR LogR+Cov
LTPub vs
LogR

T2D (Metabo) 369.7 244.05 252.23 +51%

T2D (MEC) 402.86 320.08 400.89 +26%

PC 1912.88 1787.61 1844.40 +7%

LC 416.95 359.64 331.28 +16%

BC 395.16 390.86 386.83 +1%

RA 511.31 470.91 466.11 +9%

ESKD 188.38 137.80 134.70 +37%

AMD 185.6 159.38 110.33 +16%

The sum of each of the test statistics across all of the SNPs in each of the
diseases. LTPub vs LogR is the % increase of LTPub compared to LogR. It has a
median value of 16%. Type 2 diabetes (T2D), prostate cancer (PC), lung cancer
(LC), breast cancer (BC), rheumatoid arthritis (RA), end-stage kidney disease
(ESKD), and age-related macular degeneration (AMD).
doi:10.1371/journal.pgen.1003032.t005
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onset cases. Including study cohort as a covariate had no

significant effect on these tests. The age information in this study

is age at onset and we therefore repeated the analysis using

E(eDz,t) = {c(t{�tt){m in cases (see Methods). This increased the

sum of x2 statistics from 1912.88 to 1925.65.

We repeated the analysis computing association statistics separately

for each of the eight BPC3 cohorts and performing a meta-analysis

across cohorts using inverse variance weighting to combine test

statistics [41]. Results were broadly similar, with a 7% increase in the

sum of x2 statistics of LT compared to LogR. However, one

difference is that LogR with age as covariate produced a 1.3%

increase in x2 statistics in the combined analysis (both with and

without study as a covariate) but a 2.3% decrease in x2 statistics in the

meta-analysis. We sought to understand this difference by comparing

performance separately for each cohort. We determined that LogR

with age as covariate performs similarly to LogR if cases and controls

are age-matched, performs worse than LogR if controls are much

younger, slightly older or much older than cases, but performs better

if controls are slightly younger than cases—as in the HPFS cohort

and in the combined analysis. LogR with age as covariate performs

better in the latter case because age-adjusted case-control phenotype

has a more extreme value in younger cases than in older cases,

mimicking the posterior mean quantitative trait phenotype used in

the LT statistic. The effect of conditioning covariate in LogR is a

complex function of ascertainment strategy, effect size, and the

distribution in the cohort, and should not be viewed as a method that

improves power in the general case [9,10,11].

For the prostate cancer dataset, we simulated 100,000 datasets

with the same sample size, covariates, and case-control status as

the real dataset. We simulated a causal variant with effect size 0.07

and minor allele frequency 0.05 under the LT model and

computed statistics for LT and LogR. The percent improvement

was 6%+3%, similar to that in the real dataset (see Text S1 and

Table S5 in File S1).

Other datasets. In addition to T2D and prostate cancer, we

examined lung cancer [42,43] with age as a covariate, breast cancer

[44,45] with age as a covariate, rheumatoid arthritis [46] with age

and sex as covariates, age-related macular degeneration [47] with

age as a covariate, and end-stage kidney disease [48] (ESKD) with

age as a covariate (Tables 4–5 and Tables S5,S11–S15). The breast-

cancer, lung-cancer, and age-related macular degeneration studies

are matched case-control-covariate ascertained, and the rheuma-

toid arthritis and ESKD studies are case-control ascertained. The

parameters for the LTPub model were set according to published

prevalence studies for the appropriate covariates and diseases (see

Text S1 in File S1). In each case we compared the relative

performance of the LT statistic to the standard association test

statistics over known associated SNPs with results presented in

Tables 4–5 and Tables S11–S15. The LT statistic improved 16%

for lung cancer, 1% for breast cancer, 9% for rheumatoid arthritis,

37% for end-stage kidney disease, and 16% for age-related macular

degeneration (see Table S5 in File S1). Across all datasets 115 out of

157 SNPs had higher odds ratios in the low risk group as expected

from the LT model. The age information in the breast cancer study

is age at onset and we therefore repeated the analysis using

E(eDz,t) = {c(t{�tt){m in the cases (see Methods). This decreased

the sum of x2 statistics from 395.16 to 393.39.

Averaging across the eight datasets analyzed, the LT approach

we propose attained a median improvement of 16% and mean

improvement of 20% as compared to the commonly used LogR

method, with an improvement for 115 of 157 SNPs (P-

value = 161029). To show that relative improvement of LT is

not solely due to SNPs with large values of LogR, we computed

the sum of LT and LogR for the SNPs in the lower 50% of LogR

for each disease excluding the single SNP of ESKD. The LT

statistic had a 15% median improvement and an 18% mean

improvement over LogR for these lower 50% SNPs. We also ran

permutations to show that the gains of the LT relative to LogR

require the correct covariate information and that genotype and

covariate are correlated for known loci, as predicted by the liability

threshold model (see Text S1 in File S1) and any penetrance

model where genotype and clinical covariate affect outcome [10].

T2D and lung cancer are both affected by clinical covariates

(BMI and smoking status) that are partly genetically driven. In

such instances, LT modeling of the covariate will generally

increase power to detect SNPs whose primary association is to the

disease, and reduce power to detect SNPs whose primary

association is to the covariate with secondary association to the

disease. In light of this, LT modeling of the covariate is our

recommended strategy, since SNPs whose primary association is to

the covariate are best discovered via separate studies of association

to the covariate trait. Following this strategy, we used both BMI

and age as covariates for T2D. We note that the T2D SNPs tested

include one locus (FTO) which has a primary association to BMI

with induced secondary association to T2D [49]. As expected, LT

performed poorly at FTO SNPs (Table S8, S9 in File S1). We

elected to include FTO SNPs in our computation of %

improvement in order to avoid overstating our results, but we

believe it would be technically appropriate to exclude these SNPs

from this computation, since they would be best discovered by a

separate study of association to BMI.

In the case of lung cancer, if the goal is to identify lung cancer SNPs

(rather than smoking SNPs) we recommend including both age and

smoking as covariates. However, our task of evaluating the LT model

for lung cancer was complicated by the fact that many known lung

cancer loci have a primary association to smoking with a secondary

(less statistically significant) association to lung cancer [50,51].

Therefore, we conservatively report the improvement for using age

as a covariate only. However, we believe it would be technically

appropriate to exclude smoking SNPs from the computation and

report the larger improvement for age and smoking as covariates for

the remaining SNPs. Therefore, we reran the lung cancer data on the

subset of five SNPs that do not have a primary association to smoking

status, and fit both age and smoking status with LTPub to get

Q= 0.030*(age-50)+2.59*(smoking-0.25)23.06, where smoking is

status as a smoker or non-smoker. Age described 2% of the variation

on the liability scale and smoking status described 76%. The

improvement of LT over LogR was 30% for age and smoking, 27%

for age only, and 11% for smoking status only.

False-positive rate and correct null distribution
For each disease we permuted the genotypes of the individuals,

keeping the case-control and covariates fixed 100,000 times. We

reran the LT statistic on each permutation using the same LTPub

parameters for each disease as above, and verified that LT had the

appropriate 5% type 1 error rate at each SNP and lGC = 1.00.

Additionally, we computed LT statistics on the complete Women’s

Genome Health Study (WGHS) age-related macular degeneration

GWAS dataset of 339,596 SNPs [52]. There were 5.00% of tests

with P-value,0.05 and 1.02% for P-value,0.01. Furthermore the

Kolmogorov-Smirnov test [31] with a x2(1 dof) distribution was

not significant (P-value = 0.26), nor was the K-S test restricted to

the tail with LT x2.3.84 (P-value = 0.15).

Discussion

We have shown that informed conditioning on clinical

covariates in association studies with case-control-covariate or
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case-control ascertainment yields a substantial increase in power in

the simulations and empirical datasets analyzed here. The gain in

power varies across diseases and is a function of the proportion of

variance on the liability scale explained by the covariate(s), the

disease prevalence, and the ascertainment strategy. We note that the

increase in power will often exceed the increase in x2 statistics. For

example, a GWAS with 5000 cases and 5000 controls has 43.7%

power at P-value threshold 561028 to detect a SNP with a minor

allele frequency of 20% and an odds ratio of 1.2. The power

increases to 59.8% (a.36% increase in power, in the sense that

.36% more variants will be discovered) when increasing x2 statistics

by 16%, which is similar to the median increase in x2 statistics that

we observed in our empirical studies. Additional significant gains in

power, particularly under the LT approach, are possible by

collecting cases at phenotypic extremes [16,53,54,55,56,57], taking

care to check for SNPs associated with covariate as opposed to the

disease [10]. The use of genetic covariates in the LT framework may

also significantly increase the power of association studies. In that

context we recommend a different method for estimating LT model

parameters [26]. The LT approach is also applicable to data

obtained from high throughput sequencing studies [16].

Thus, there is a very strong motivation for applying the

approach we have described to type 2 diabetes, prostate cancer,

lung cancer, age-related macular degeneration, and end-stage

kidney disease (for which the LTPub parameters in Table 3 can be

used), as well as for other diseases with analogous effects of clinical

covariates on genetic risk (for which LTPub can be used to

estimate parameters). For T2D and prostate cancer alone, we

identified 29 recent studies published in Nature Genetics (see Text S1

in File S1) that would benefit from application of our method.

Notably, our empirical improvements are in line with the

improvements that would have been expected based on SNP

and covariate effect sizes in these same datasets. In the case of

diseases with genetically driven covariates (e.g. BMI in T2D) we

recommend using all available covariates unless the goal is to

identify SNPs whose primary association is to the covariate. There

are many other diseases with important clinical covariates where

informed conditioning may prove useful [58,59,60]. Recent

studies of age-related macular degeneration [61] and gout [62]

found increased odds ratios estimated from younger cases and

genetic associations to age of onset, which is consistent with the LT

model.

We caution against the use of standard conditioning approaches

(LogR+Cov) in case-control ascertained studies, which can

increase or decrease power as a function of covariate effect size

and disease prevalence [8,10,26]. The relationship between

modeling disease on the liability threshold and dichotomous scale

has been examined by [23] as well as [24,25] in the context of

computing the area under the receiver operator curve (AUC),

estimating risks, and the distribution of disease in a population. A

recent study of Clayton has examined the use of covariates in case-

control ascertained association studies and shown that a reweight-

ing method (such as ours) can increase power [13]. This paper

discusses the issue of power loss from conditioning [8] in logistic

regression and states, ‘‘the loss of power resulting from the use of

stratified tests can be avoided by matching in the design of case-

control studies’’. We have shown that by including information

from external epidemiological information, it is possible to not

only avoid a power loss, but to achieve substantial power gain in

matched case-control-covariate studies. The paper also states, ‘‘the

strategy of ignoring other known disease susceptibility loci and risk

factors when testing for new associations with complex disease, for

example in genome-wide association studies, is justifiable, but only

when effects combine additively on the logistic scale.’’ While

ignoring other risk factors is justifiable when testing under a

retrospective logit model, we have demonstrate here, that for

diseases with non-infinitesimal prevalence, and assuming gene

environment independence, it is possible to achieve power gains

even when the disease model is additive under a logit model. This

was also shown in the work of [12] under a prospective logit

model. We discuss additional approaches to analysis case-control

ascertained data in Text S1 in File S1.

We designed the LT method for effects that are additive on the

liability scale, which are hypothesized to account for the majority

of genetic variation across a range of complex phenotypes [33].

We have shown empirically that it also behaves well under the

standard additive logit model. In the presence of gene x covariate

interaction it alternatively loses or gains power depending upon

the direction of the interaction, but the method’s increase in power

does not rely on the presence of interaction. When interaction is

present, other methods, such as logistic regression with an

interaction term (G+GxE), may be more powerful. However, the

LT statistic outperformed commonly used tests such as LogR on

average in simulations of gene x covariate interaction (Table S4 in

File S1), and remains our recommended approach after account-

ing for the possibility of such interactions. We note that when there

is no true gene x covariate interaction on the liability scale, but

individuals are ascertained based on phenotype, there will be an

induced correlation between clinical covariate and genotypes

associated with phenotype. Furthermore, there may be evidence of

GxE interaction on the odds ratio scale and we therefore caution

against inferring a biological mechanism of interaction when the

data are consistent with additivity on the liability scale.

Meta-analysis is easily handled in the context of the liability

threshold framework. Summary statistics are typically combined

using odds ratios and standard errors. The LT statistics returns

effect sizes on the liability scale and standard errors. Since these

are easily converted to odds ratios (see Text S1 in File S1), and a

standard inverse variance weighting can be used to combine

results on either scale to generate a meta-analysis statistic.

Furthermore, since odds ratios are a function of covariate

ascertainment (e.g. if young cases are oversampled), meta-analysis

on the liability scale maybe able to provide more robust estimates

of effect size. Replication of results works as normal, additional

cases and controls are collected, genotyped, and tested for

association. If covariate information is not available in the

replication set a standard LogR test is used.

The LT statistic uses covariates to increase power. We assume

that the LT model parameters estimated from epidemiological

data, as well as the values of the covariates measured in the study,

are reasonably accurate. Under inaccurate estimation of model

parameters our method will have reduced power relative to its

power with accurate model parameters, but it will still have the

correct null distribution. In simulations, mis-specifying the

parameters by a moderate amount produced almost no change

in power and mis-specifying the parameters by a large amount (up

to 100%) still performed at least as well as logistic regression with

no conditioning in all cases examined (see Text S1 in File S1).

Accounting for uncertainty in the data from the epidemiological

literature may further improve the increase in test statistic beyond

the 16% observed in this analysis. Additional covariates (e.g.

principal component covariates) may be needed to prevent false

positives [27,63]. These are easily handled by the LT statistic and

included in the linear regression after the posterior means are

computed (see Text S1 in File S1). When a genetically driven

covariate is correlated to the phenotype (e.g. BMI in T2D),

including that covariate in the LT model will alter the power to

find SNPs related to phenotype through the covariate (see Text S1
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in File S1). When using extreme sampling of a covariate (e.g. BMI

in the T2D Metabochip study), there exists the theoretical

possibility of misclassifying a covariate (BMI) association as a

phenotype (T2D) association [49], because the posterior means

may be correlated with BMI. Our recommendation is to check this

by testing for association to the covariate (BMI) explicitly. A more

conservative approach is to use BMI as a covariate after posterior

means are computed, but some of the increase in power may be

lost.

When conducting an association study where known clinical

factors alter disease risk, the gain in power of the LT statistic is

function of the number of individuals with available covariate

information. For example, in the DIAGRAM dataset all 31

cohorts had BMI information and 20 had age at diagnosis

information, thus the gain in power possible from the LT method

will be nearly maximal [1]. If the increase in x2 is 16%, then an

individual with a covariate provides the same power as 1.16

individuals with no covariate. Researchers should therefore

carefully weigh the cost of collecting covariates when designing

studies since it may provide a more cost effective way to

substantially increase power than genotyping more individuals.

In cross-sectional studies when data are randomly ascertained

with respect to both case-control status and clinical covariate, the

LT statistic and LogR+Cov are expected to perform similarly and

our recommendation is to use LogR+Cov. In case-control studies

of high prevalence diseases when clinical covariates are randomly

ascertained, but cases are oversampled relative to their prevalence

in the population, the LT statistic will slightly outperform

LogR+Cov and our recommendation is to use the LT statistic.

In case-control diseases of low prevalence, or in case-control-

covariate studies when clinical covariates are non-randomly

ascertained the LT statistic will substantially outperform Log-

R+Cov (which may often lose power relative to LogR) and our

recommendation is to use the LT statistic. As described above, the

LT statistic also outperforms other methods. In summary,

informed conditioning on clinical covariates has a large potential

to increase the power of case-control association studies and

identify new risk variants.

Web resources
LTSOFT software: http://www.hsph.harvard.edu/faculty/alkes-

price/software/

Supporting Information

File S1 Supporting information.
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