151 research outputs found
Evaluation of imaging techniques for the assessment of tumour progression in an orthotopic rat model of malignant pleural mesothelioma
OBJECTIVES An orthotopic rat tumour recurrence model for malignant pleural mesothelioma (MPM) provides clinical similarity to patients and is useful for drug testing combined with surgical intervention. Importantly, a reliable imaging method is required allowing for noninvasive and repetitive evaluation of the tumour load. We compared the tumour load assessed by bioluminescence and magnetic resonance imaging (MRI) to the macroscopic tumour volume as a reference standard. METHODS A total of 500 000 syngeneic rat MPM cells transfected with luciferase were implanted underneath the parietal pleura of immunocompetent rats (n = 13). From the second day after implantation, bioluminescence measurements of the tumour load expressed as the maximum bioluminescent intensity (photon/second) were performed daily after intraperitoneal injection of the luciferase substrate, d-luciferin, to observe the first occurrence of tumour. Six days after the first detection of tumour, bioluminescence, MRI and macroscopic tumour volume measurement were conducted. For MRI, a 4.7-Tesla small animal imager equipped with a (1)H whole-body rat coil was employed using T2-weighted fast spin-echo sequences. Tumour burden (mm(3)) was quantified from magnetic resonance transverse images by two independent readers by manual segmentation. Finally, the tumour burden assessed by bioluminescence and MRI was correlated (Pearson's correlation) with the macroscopic measurement of tumour (ellipsoid) volume. RESULTS In all rats, a single tumour nodule was found at the inoculation site with a median macroscopic volume of 46 mm(3) (18-377 mm(3)). For tumour burden quantification of MRIs, we observed good interobserver correlation (R(2) = 0.81, P < 0.0001) as well as significant association with the macroscopic tumour volume (R(2) = 0.59, P = 0.002). However, the signal intensity of bioluminescence did not correspond to the macroscopic tumour volume (R(2) = 0.01, P = 0.76). CONCLUSIONS MRI is a reliable and reproducible noninvasive in vivo imaging method for MPM tumour burden assessment for the present MPM mode
Ufd1-Npl4 recruit Cdc48 for disassembly of ubiquitylated CMG helicase at the end of chromosome replication
Disassembly of the Cdc45-MCM-GINS (CMG) DNA helicase is the key regulated step during DNA replication termination in eukaryotes, involving ubiquitylation of the Mcm7 helicase subunit, leading to a disassembly process that requires the Cdc48 “segregase”. Here, we employ a screen to identify partners of budding yeast Cdc48 that are important for disassembly of ubiquitylated CMG helicase at the end of chromosome replication. We demonstrate that the ubiquitin-binding Ufd1-Npl4 complex recruits Cdc48 to ubiquitylated CMG. Ubiquitylation of CMG in yeast cell extracts is dependent upon lysine 29 of Mcm7, which is the only detectable site of ubiquitylation both in vitro and in vivo (though in vivo other sites can be modified when K29 is mutated). Mutation of K29 abrogates in vitro recruitment of Ufd1-Npl4-Cdc48 to the CMG helicase, supporting a model whereby Ufd1-Npl4 recruits Cdc48 to ubiquitylated CMG at the end of chromosome replication, thereby driving the disassembly reaction
Cullin 4B Ubiquitin Ligase Is Important for Cell Survival and Regulates TGF-β1 Expression in Pleural Mesothelioma
We previously demonstrated that cullin 4B (CUL4B) upregulation was associated with worse outcomes of pleural mesothelioma (PM) patients, while the overexpression of its paralog CUL4A was not associated with clinical outcomes. Here, we aimed to identify the distinct roles of CUL4B and CUL4A in PM using an siRNA approach in PM cell lines (ACC Meso-1 and Mero82) and primary culture. The knockdown of CUL4B and CUL4A resulted in significantly reduced colony formation, increased cell death, and delayed cell proliferation. Furthermore, similar to the effect of CUL4A knockdown, downregulation of CUL4B led to reduced expression of Hippo pathway genes including YAP1, CTGF, and survivin. Interestingly, CUL4B and not CUL4A knockdown reduced TGF-β1 and MMP2 expression, suggesting a unique association of CUL4B with this pathway. However, the treatment of PM cells with exogenous TGF-β1 following CUL4B knockdown did not rescue PM cell growth. We further analyzed ACC Meso-1 xenograft tumor tissues treated with the cullin inhibitor, pevonedistat, which targets protein neddylation, and observed the downregulation of human TGF-β1 and MMP2. In summary, our data suggest that CUL4B overexpression is important for tumor cell growth and survival and may drive PM aggressiveness via the regulation of TGF-β1 expression and, furthermore, reveal a new mechanism of action of pevonedistat
The histone demethylase LSD1/KDM1A promotes the DNA damage response
Histone demethylation is known to regulate transcription, but its role in other processes is largely unknown. We report a role for the histone demethylase LSD1/KDM1A in the DNA damage response (DDR). We show that LSD1 is recruited directly to sites of DNA damage. H3K4 dimethylation, a major substrate for LSD1, is reduced at sites of DNA damage in an LSD1-dependent manner. The E3 ubiquitin ligase RNF168 physically interacts with LSD1 and we find this interaction to be important for LSD1 recruitment to DNA damage sites. Although loss of LSD1 did not affect the initial formation of pH2A.X foci, 53BP1 and BRCA1 complex recruitment were reduced upon LSD1 knockdown. Mechanistically, this was likely a result of compromised histone ubiquitylation preferentially in late S/G2. Consistent with a role in the DDR, knockdown of LSD1 resulted in moderate hypersensitivity to γ-irradiation and increased homologous recombination. Our findings uncover a direct role for LSD1 in the DDR and place LSD1 downstream of RNF168 in the DDR pathway
Recommended from our members
E4 ligase–specific ubiquitination hubs coordinate DNA double-strand-break repair and apoptosis
Multiple protein ubiquitination events at DNA double-strand breaks (DSBs) regulate damage recognition, signaling and repair. It has remained poorly understood how the repair process of DSBs is coordinated with the apoptotic response. Here, we identified the E4 ubiquitin ligase UFD-2 as a mediator of DNA-damage-induced apoptosis in a genetic screen in Caenorhabditis elegans. We found that, after initiation of homologous recombination by RAD-51, UFD-2 forms foci that contain substrate-processivity factors including the ubiquitin-selective segregase CDC-48 (p97), the deubiquitination enzyme ATX-3 (Ataxin-3) and the proteasome. In the absence of UFD-2, RAD-51 foci persist, and DNA damage-induced apoptosis is prevented. In contrast, UFD-2 foci are retained until recombination intermediates are removed by the Holliday-junction-processing enzymes GEN-1, MUS-81 or XPF-1. Formation of UFD-2 foci also requires proapoptotic CEP-1 (p53) signaling. Our findings establish a central role of UFD-2 in the coordination between the DNA-repair process and the apoptotic response
Deletions of CDKN2A and MTAP Detected by Copy-Number Variation Array Are Associated with Loss of p16 and MTAP Protein in Pleural Mesothelioma
CDKN2A deletion is a common alteration in pleural mesothelioma (PM) and frequently associated with co-deletion of MTAP. Since the standard detection method for CDKN2A deletion and FISH analysis is relatively expensive, we here investigated the suitability of inexpensive p16 and MTAP IHC by comparing concordance between IHC and OncoScan CNV arrays on samples from 52 PM patients. Concordance was determined using Cohen's kappa statistics. Loss of CDKN2A was associated with co-deletion of MTAP in 71% of cases. CDKN2A-MTAP copy-number normal cases were also IHC positive in 93% of cases for p16 and 100% for MTAP, while homozygous deletion of CDKN2A-MTAP was always associated with negative IHC for both proteins. In cases with heterozygous CDKN2A-MTAP loss, IHC expression of p16 and MTAP was negative in 100% and 71%, respectively. MTAP and p16 IHC showed high sensitivity (MTAP 86.5%, p16 100%) and specificity (MTAP 100%, p16 93.3%) for the detection of any gene loss. Loss of MTAP expression occurred exclusively in conjunction with loss of p16 labeling. Both p16 and MTAP IHC showed high concordance with Oncoscan CNV arrays (kappa = 0.952, p < 0.0001, and kappa = 0.787, p < 0.0001 respectively). We recommend combined MTAP and p16 immunohistochemistry to confirm the diagnosis of PM
Reactive species and DNA damage in chronic inflammation: Reconciling chemical mechanisms and biological fates
Chronic inflammation has long been recognized as a risk factor for many human cancers. One mechanistic link between inflammation and cancer involves the generation of nitric oxide, superoxide and other reactive oxygen and nitrogen species by macrophages and neutrophils that infiltrate sites of inflammation. Although pathologically high levels of these reactive species cause damage to biological molecules, including DNA, nitric oxide at lower levels plays important physiological roles in cell signaling and apoptosis. This raises the question of inflammation-induced imbalances in physiological and pathological pathways mediated by chemical mediators of inflammation. At pathological levels, the damage sustained by nucleic acids represents the full spectrum of chemistries and likely plays an important role in carcinogenesis. This suggests that DNA damage products could serve as biomarkers of inflammation and oxidative stress in clinically accessible compartments such as blood and urine. However, recent studies of the biotransformation of DNA damage products before excretion point to a weakness in our understanding of the biological fates of the DNA lesions and thus to a limitation in the use of DNA lesions as biomarkers. This review will address these and other issues surrounding inflammation-mediated DNA damage on the road to cancer.National Institute of Environmental Health Sciences (CA116318)National Institute of Environmental Health Sciences (CA103146)National Institute of Environmental Health Sciences (CA026731)National Institute of Environmental Health Sciences (ES016450)National Institute of Environmental Health Sciences (ES002109)National Institute of Environmental Health Sciences (ES017010)National Cancer Institute (U.S.)National Science Foundation (U.S.) (grant no. CHE-1019990)Singapore-MIT Alliance for Research and TechnologyMassachusetts Institute of Technology (Westaway Fund
Intracavitary cisplatin-fibrin followed by irradiation improved tumor control compared to the single treatments in a mesothelioma rat model
OBJECTIVE
To test the safety and efficacy of combination treatment for pleural mesothelioma (PM) with intracavitary cisplatin-fibrin (cis-fib) plus hemithoracic irradiation (IR) applied after lung-sparing surgery in an orthotopic immunocompetent rat model.
METHODS
We randomized male F344 rats into 5 groups: cis-fib (n = 9), 10 Gy IR (n = 6), 20 Gy IR (n = 9), cis-fib+10 Gy IR (n = 6), and cis-fib+20 Gy IR (n = 9). Subpleural tumor implantation was performed on day 0 with 1 million syngeneic rat mesothelioma cells (IL45-luciferase). Tumors were resected on day 9, followed by treatment with intracavitary cis-fib or vehicle control (NaCl-fib). On day 12, computed tomography-guided local irradiation in a single high dose of the former tumor region was applied.
RESULTS
We observed only short-term side effects related to 20 Gy radiotherapy. Compared to 20 Gy, 10 Gy IR did not show an impact on tumor growth. At 3 days after treatment with 20 Gy IR (day 15 of the experiment), we detected significantly smaller tumors in the cis-fib+IR group compared to IR alone (mean tumor growth, 252% vs 539%; P = .04). On day 21, there was a significant difference in tumor growth between cis-fib-treated and cis-fib+IR- treated tumors (mean tumor growth, 2295% vs 660%; P = .01).
CONCLUSIONS
Localized treatment after tumor resection in PM aims to improve local tumor control. Irradiation applied in combination with intracavitary cis-fib in rats is safe up to a dosage of 20 Gy and shows an additive effect on tumor growth delay compared to the single treatments
UCHL3 Regulates Topoisomerase-Induced Chromosomal Break Repair by Controlling TDP1 Proteostasis
Genomic damage can feature DNA-protein crosslinks whereby their acute accumulation is utilized to treat cancer and progressive accumulation causes neurodegeneration. This is typified by tyrosyl DNA phosphodiesterase 1 (TDP1), which repairs topoisomerase-mediated chromosomal breaks. Although TDP1 levels vary in multiple clinical settings, the mechanism underpinning this variation is unknown. We reveal that TDP1 is controlled by ubiquitylation and identify UCHL3 as the deubiquitylase that controls TDP1 proteostasis. Depletion of UCHL3 increases TDP1 ubiquitylation and turnover rate and sensitizes cells to TOP1 poisons. Overexpression of UCHL3, but not a catalytically inactive mutant, suppresses TDP1 ubiquitylation and turnover rate. TDP1 overexpression in the topoisomerase therapy-resistant rhabdomyosarcoma is driven by UCHL3 overexpression. In contrast, UCHL3 is downregulated in spinocerebellar ataxia with axonal neuropathy (SCAN1), causing elevated levels of TDP1 ubiquitylation and faster turnover rate. These data establish UCHL3 as a regulator of TDP1 proteostasis and, consequently, a fine-tuner of protein-linked DNA break repair
The proteasomal de-ubiquitinating enzyme POH1 promotes the double-strand DNA break response
- …
