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Abstract
Chronic inflammation has long been recognized as a risk factor for many human cancers. One
mechanistic link between inflammation and cancer involves the generation of nitric oxide,
superoxide and other reactive oxygen and nitrogen species by macrophages and neutrophils that
infiltrate sites of inflammation. While pathologically high levels of these reactive species cause
damage to biological molecules, including DNA, nitric oxide at lower levels plays important
physiological roles in cell signaling and apoptosis. This raises the question of inflammation-
induced imbalances in physiological and pathological pathways mediated by chemical mediators
of inflammation. At pathological levels, the damage sustained by nucleic acids represents the full
spectrum of chemistries and likely plays an important role in carcinogenesis. This suggests that
DNA damage products could serve as biomarkers of inflammation and oxidative stress in
clinically accessible compartments such as blood and urine. However, recent studies of the
biotransformation of DNA damage products prior to excretion point to a weakness in our
understanding of the biological fates of the DNA lesions and thus to a limitation in the use of
DNA lesions as biomarkers. This review will address these and other issues surrounding
inflammation-mediated DNA damage on the road to cancer.

More than an association between chronic inflammation and cancer
Stemming from the original observations by Virchow,1 the link between chronic
inflammation and cancer is now recognized as essentially a cause-and-effect relationship.2–7

Epidemiological evidence suggests that more than 20% of all cancers are caused by chronic
infection or other types of chronic inflammation,8 with multiple lines of evidence from
laboratory and population-based studies pointing to a persistent local inflammatory state in
organ-specific carcinogenesis9–15 even for tumors not epidemiologically linked to infection
or inflammation. There are extremely strong correlations between chronic exposure to
asbestos and mesotheloima,16,17 and chronic infections and cancer for liver flukes (O.
viverrini) and cholangiocarcinoma,18,19 Heliobactor pylori and gastric cancer,20–22 viral
hepatitis and liver cancer,23 and Schistosoma haematobium and bladder cancer.24,25

While the epidemiological evidence is well established, the mechanisms underlying the link
between chronic inflammation and cancer are not. These mechanisms can be arbitrarily
divided into biological and chemical as illustrated in Figure 1 for infection-induced
inflammation. The initial infection leads to cell death and changes in cell phenotype, with
the release of cytokines and chemotactic factors that cause infiltration of macrophages,
neutrophils, lymphocytes and other immune cells. The biological side of chronic
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inflammation entails the effects of cytokines and chemokines on host cell cycle and
apoptosis, while the chemical side involves generation of a variety of reactive oxygen and
nitrogen species by activated phagocytes with the goal of eradicating the infection.2,4,22,26–
30 This review will focus on our current understanding of the chemical side of inflammation
as illustrated by our current understanding of the chemical mediators of inflammation, the
damage they produce in DNA and the biological fates of the damage products.

The spectrum of reactive oxygen and nitrogen species in chronic
inflammation: balancing physiology and pathology

As illustrated in Figure 1, activated phagocytes generate a battery of reactive oxygen and
nitrogen species that can directly damage all types of cellular biomolecules and also alter
cell physiology by non-destructive means. These chemical mediators of inflammation span a
wide range of reactions, including nitrosation, nitration, oxidation and halogenation.
Activated macrophages generate nitric oxide (NO),29,31,32 which at low concentrations (nM)
under non-inflammation conditions is an important signaling molecule and regulator of the
cardiovascular, nervous, and immune systems.33–39 The high concentrations of NO (≤1
μM)40–42 produced by macrophages at sites of inflammation is considered to be
pathological due to interference with NO signaling pathways or by reactions with oxygen
and superoxide (O2

−•) to generate a variety of highly reactive nitrogen species.27,29,43,44

Autooxidation of NO generates the nitrosating agent, nitrous anhydride (N2O3
; Figure 1),

while the reaction of O2
−• and NO at diffusion-controlled rates leads to peroxynitrite

(ONOO−), which, in its protonated form, undergoes rapid (t1/2 ~1 s) homolysis to yield
hydroxyl radical (•OH) and the weak oxidant, nitrogen dioxide radical (NO2

•). Further
reaction of ONOO− with carbon dioxide leads to formation of nitrosoperoxycarbonate
(ONOOCO2

−), which also undergoes homolytic scission (t1/2 ~ 50 ms) to form carbonate
radical anion (CO3

−•) and NO2
•. Neutrophils contribute to inflammation with

myeloperoxidase-mediated generation of hypochlorous acid (HOCl), a potent oxidizing and
halogenating agent, and conversion of nitrite to NO2

•.45–48

While these highly reactive oxygen and nitrogen species molecules cause damage to all
types of cellular biomolecules, including lipids, proteins, nucleic acids, carbohydrates and
small metabolites, there is an emerging appreciation for the problem of reconciling the
pathological effects of high levels of NO and the physiological role of NO in signaling
pathways related to apoptosis, cell cycle and other facets of cell function. This is further
complicated by the recently recognized activity of nitroxyl (HNO) in signaling pathways
and pathophysiology.49 NO-mediated signaling appears to occur by either activation of
soluble guanylate cyclase50 or by S-nitrosylation of proteins51 possibly mediated by
thioredoxin.52 Through these and other pathways, NO displays often contradictory effects
on cell growth and cytotoxicity, variably promoting and inhibiting apoptosis in normal and
tumor cells.39,53–55 Wink and coworkers have dissected these apparently contradictory
observations and they have proposed a set of five graduated dose-response relationships for
the biological activity of NO, with low levels of NO generally promoting cell survival and
proliferation and high concentrations leading to cell cycle arrest and apoptosis.39 This series
ranges from processes involving guanylate cyclase/cGMP at NO concentrations less than 30
nM, to Akt phosphorylation at ~30–100 nM, stabilization of HIF-1α at ~100–300 nM, p53
phosphorylation > 400 nM and overt toxicity at ≥ 0.5–1 μM NO.39 This model is consistent
with much of the otherwise contradictory data and points to the need to specify dose, dose-
rate and cell types when comparing NO effect in vitro and in vivo. The following review
addresses toxic levels of NO generated by activated macrophages at sites of inflammation in
humans, along with the other reactive oxygen, nitrogen and halogen species produced during
inflammation.
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The chemistry of DNA damage occurring in chronic inflammation
The DNA damage predicted to arise during chronic inflammation may be viewed as a
paradigm for other pathological chemical reactions caused by the chemical mediators of
inflammation. The reactive chemical mediators of inflammation are capable of damaging
nucleic acids by two routes. One involves direct reaction with DNA and RNA, such as
nitrosative deamination, oxidation and halogenation. Alternatively, the reactive chemicals
can cause nucleic acid damage indirectly by formation of DNA adducts with electrophiles
generated from other reactions with polyunsaturated fatty acids (PUFA), proteins,
carbohydrates, small molecule metabolites, and even nucleic acids themselves. This portion
of the review addresses the variety of DNA damage chemistries arising at sites of chronic
inflammation.

Nitrosative deamination of nucleobases in DNA and RNA
Deamination of DNA and RNA can occur by a variety of mechanisms, including simple
hydrolysis, enzymatic activities and nitrosative processes.56–65 While nitrosative
deamination of nucleobases in DNA and RNA can occur in acidified solutions of nitrite
(NO2

−),66–68 inflammation-induced deamination of DNA and RNA bases in vivo is thought
to be mediated primarily by the nitrosative chemistry of N2O3.29 As shown in Figure 2,
products of nitrosative deamination for canonical nucleobases are hypoxanthine (2-
deoxyinosine/dI and inosine/rI as nucleosides) derived from adenine; uracil (2-deoxyuridine/
dU, uridine/rU) from cytosine; xanthine (2-deoxyxanthosine/dX, xanthosine/rX) and
oxanine (2-deoxyoxanosine/dO, oxanosine/rO) derived from guanine. Nitrosation of DNA
also leads to formation of inter- and intra-strand G-G/G-A cross links and abasic sites
arising from N7-nitrosation of purines.29 Oxanine presents a unique problem as one of the
two deamination products arising from G. It has been observed to form in purified DNA
exposed to nitrite under acidic conditions,69,70 but it has not been detected by LC-MS or
LC-MS/MS under biologically relevant conditions in purified DNA and cells exposed to NO
and O2 in vitro,71,72 or in tissues from a mouse model of NO-overproduction.73 To explain
this discrepancy, Glaser and coworkers have proposed a model which accounts for most, if
not all, of the observed deamination products under different conditions and predicts that
significant levels of O should be found in nucleosides, nucleotides and single-stranded DNA
under conditions of nitrosative stress.74 With respect to the other base deamination products
(X, I and U), the cellular environment provides an approximately four-fold protective effect
against nitrosative deamination, with significant elevations of X, I and U only when cells are
exposed to toxic concentrations of NO and associated N2O3.71,72 Similar results were
obtained in animal model of inflammation.73,75 It is possible that the modest increases in the
steady-state levels of DNA deamination products results from limited exposure of nuclear
DNA to nitrosating species or from a balance between the rates of formation and repair of
nucleobase deamination lesions in DNA.

Guanine oxidation by peroxynitrite and nitrosoperoxycarbonate
Guanine is the most easily oxidized structure in DNA (Eo = 1.29 V vs. NHE76) and is thus
the major target for oxidation by reactive nitrogen, oxygen and halogen species arising at
sites of inflammation. As shown in Figure 3, the oxidation of G in DNA by ONOO− and
ONOOCO2

−, which is mediated by the •OH (2.3 V vs. NHE77) and CO3
−• (1.7 V vs.

NHE78) intermediates arising from these species, respectively, produces several products
including 8-nitrodG, the instability of which leads to depurination; 8-oxo-7,8-dihydro-2′-
deoxyguanosine (8-oxo-dG); 5-guanidino-4-nitroimidazole (nitroimidazole); and 2,2-
diamino-4-(2-deoxy-beta-D-erythro-pentafuranosyl-amino)-5 (2H)-oxazolone (oxazolone).
This spectrum of products is complicated by the fact that 8-oxo-G (Eo = 0.74 V vs. NHE79)
is ~1000-fold more reactive than the parent G toward further oxidation80 and its oxidation
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gives rise to a variety of more stable secondary products (Figure 3). Of these products, only
the diastereomeric spiroiminodihydantoin (Sp) lesions have been detected in cells.81 The
spectrum of G oxidation products arising from reactive nitrogen species differs from the
three major G oxidation products arising from γ-irradiation of DNA: N-(2,6-diamino-4-
hydroxy-5-formamidopyrimidine (Fapy-G), 8-oxo-G and Ox.82,83

Halogenation
Another class of oxidatively induced nucleobase lesions, the halogenation products, appears
to be unique to myeloperoxidase-generated hypohalous acids. The reaction of DNA and
RNA with HOCl produced by neutrophils and HOBr produced by eosinophils leads to the
formation of the respective 5-halo-dC and 8-halo-dG and -dA lesions32,84–88 (chlorination
products shown in Figure 4). Additionally, HOCl and HOBr can oxidize proteins,
carbohydrates and polyunsaturated fatty acids to generate adduct forming electrophiles.
Given the apparent strong association between chloro-tyrosine levels and cardiovascular
disease,89 it is possible that similar granulocyte-mediated chemistry with DNA and RNA
will yield useful biomarkers of inflammation.

Indirect reactions to form DNA adducts
Recent work has highlighted the importance of reactions of DNA with electrophilic products
derived from oxidation of other cellular components, such as PUFA, proteins and
carbohydrates. For example, peroxidation of linoleic acid, the most abundant mammalian
PUFA in cell membranes, gives rise to several α,β-unsaturated aldehydes, such as trans-4-
hydroxy-2-nonenal, acrolein and 4-oxo-2-nonenal, which can react with A, G and C to form
substituted and unsubstituted etheno adducts (Figure 5).90–92 Elevated levels of these
lesions have been found under conditions of oxidative stress in human and mouse tissues.
91,93–97

Lipid peroxidation also produces a host of enal-containing compounds, such as heptenal,
pentenal, crotonaldehyde and acrolein, which react with DNA to form simpler Michael
adducts including the propano adducts shown in Figure 5.98–110 Again, these adducts have
been detected in a variety of rodent and human tissues.91,101,111–115

One well-studied DNA adduct,91,116–122 the pyrimidopurinone adduct of dG, M1dG (Figure
5), illustrates the challenge of defining chemical mechanisms in the complex pathobiology
of inflammation. While the adduct was originally observed in vitro in reactions of the lipid
peroxidation product, malondialdehyde, with dG and DNA, it also arises in reactions of
DNA with the base propenal products of 4′-oxidation of DNA.123–126 In light of the
potential mobility of M1dG in the genome127–132 and the potential for transfer of the
oxopropenyl group to and from DNA via Nε-oxopropenyllysine adducts in histone proteins,
133 it will be difficult to precisely define the source of M1G adducts in vivo.

Nucleic acid damage products as biomarkers of chronic inflammation:
Attention to the biological and metabolic fates of DNA damage products

With the recent definition of the spectrum of possible DNA damage products arising at sites
of inflammation, there has been a significant effort to develop the damage products as
biomarkers. The development of a biomarker can be viewed as a three-step process134

starting with the identification of a candidate molecule, one that is specific to the disease or
pathology. In the case of linking inflammation to cancer, there is a strong argument for
direct involvement of DNA damage in the carcinogenic process, such that DNA damage
products immediately arise as biomarker candidates. The second step has also been
accomplished with the development of analytical methods to quantify the DNA damage
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products. However, we are only partly underway with the third step in biomarker
development, which involves demonstrating that the level of the molecule correlates with
inflammation and cancer risk. As noted earlier in this review, there have been many studies
correlating the level of one or more DNA damage products with an inflammatory condition
or induced state of oxidative stress. What is missing is the added association of cancer risk.

Nonetheless, there are several problems facing the development of DNA damage products as
biomarkers, the most important of which is the difficulty of obtaining tissue samples in large
epidemiological or clinical studies. One approach to this problem is to assume that DNA
damage products eventually appear in blood and are excreted in urine, the two most
clinically accessible sampling compartments. To this end, there have been numerous studies
quantifying DNA damage products in urine.95–97,135–141 Excretion rates range from 0.4–20
nmol of 8-oxo-dG per nmol of creatinine,142 0.01–14 fmol of etheno-dA and etheno-dC per
μmol of creatinine,95,97,137 and 10–20 fmol of M1dG per kg per 24 hr,141 with orders-of-
magnitude increases often associated with disease states.95,97,137,142 A major problem in the
development of urinary biomarkers is the lack of standardization in reporting values, with
many reports lacking reference to creatinine excretion rates or 24-hour collection periods to
control for the high variation in urine concentration, and the tremendous variation in the
accuracy of different analytical methods and different practitioners.142 It is very difficult to
compare data from different studies and the reported values must be viewed with great
skepticism. The development of urinary DNA damage products as biomarkers is further
complicated by a lack of understanding of the fate of DNA damage products following their
release from a cell. Among the issues that arise are (1) the chemical form of a damage
product released from the site of formation; (2) the mechanism by which the released
damage product reaches the systemic circulation; (3) the potential for the damage product to
be chemically modified between release and excretion; (4) the mechanism of excretion; and
(5) the potential for further chemical modification in the excretory compartment.

These issues surrounding the fate of DNA damage products are perhaps best illustrated with
the well-studied 7,8-dihydro-8-oxoguanine (8-oxo-G; Fig. 1), with recent reviews providing
a comprehensive consideration of factors surrounding its use as a urinary biomarker.135,136

This relatively unstable DNA damage product, which is prone to artifacts of both formation
and destruction,143 has nonetheless been touted as a biomarker of oxidative stress, as
illustrated in a sampling of the literature.135,136,144,145 There are four fates of 8-oxo-dG in
cellular DNA and the nucleotides pool: further oxidation to more stable products, removal
from DNA by repair mechanisms, removal from the nucleotide pool by nucleotide di- and
tri-phosphatases, and eventual release from DNA following cell death. While 8-oxo-dG in
DNA is removed by the base excision repair pathway,146–149 with release of free 8-oxo-G
nucleobase, the dephosphorylation of 8-oxo-dGTP and –dGDP in the nucleotide pool
ultimately releases 8-oxo-dGMP and 8-oxodG, which are also the likely forms of 8-oxo-G
released from DNA following cell death. We are thus faced with the choice of quantifying
either 8-oxo-G, 8-oxo-dG or 8-oxo-dGMP in sampling compartments such as blood and
urine. The most abundant of these species appears to be 8-oxo-dG, which is amenable to
quantification by liquid chromatography-coupled mass spectrometry. While the excretion of
8-oxo-dG may correlate well with conditions of oxidative stress and inflammation,136 the
source of this 8-oxodG has yet to be established. Further, the fact that 8-oxoG is readily
oxidized to more stable forms (Figure 3) and may be subject to hepatic metabolism prior to
reaching the urine suggests that any 8-oxo-dG in the urine may underestimate the true level
formed at sites of inflammation.

Another confounding factor is illustrated with the metabolism of etheno adducts and M1dG.
Both adducts have been studied as urinary biomarkers95–97,137–141 in their 2-
deoxynucleoside forms. However, as recently observed by Marnett and coworkers, M1dG
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and substituted and unsubstituted etheno adducts are subject to metabolism, presumably in
the liver.150–153 With regard to etheno adducts, 2-deoxynucleoside forms of G-derived
etheno adducts are subject to deglycosylation followed by oxidation of 1,N2-ε-G to 2-
oxo-1,N2-ε-G and of the corresponding substituted adduct, heptanone-1,N2-ε-G, to 2-
oxoheptanone-1,N2-ε-G.153 With M1dG, metabolic and pharmacokinetic studies in rats
revealed a biphasic elimination from plasma with M1dG found in the urine for more than 24
hr after dosing.150 Analysis of urine revealed a metabolite of M1dG, 6-oxo-M1dG, likely
derived from hepatic xanthine oxidase activity,150 with evidence for further oxidation of 6-
oxo-M1dG on the imidazole ring to give 2,6-dioxo-M1G.151 Both of these studies raise the
possibility that urinary biomarker studies may be underestimating the true level of adducts
as a result of loss of the parent forms.

Summary
While much remains to be learned, we are beginning to understandthe mechanistic
connections between inflammation and cancer. The damage produced by pathologically high
levels of phagocyte-generated reactive oxygen, nitrogen and halogen species can cause cell
death and mutation, while high concentrations of nitric oxide can interfere with normal cell
signaling and apoptosis pathways. At pathological levels, the damage sustained by nucleic
acids represents the full spectrum of chemistries possible with the reactive species generated
by phagocytes and it likely plays a substantial role in the carcinogenic process. The final
step of establishing an association between DNA damage and cancer risk is hampered by a
limited appreciation for the biotransformation of DNA damage products prior to their
appearance in clinically accessible compartments such as blood and urine. These challenges
represent the new opportunities for future research in defining the mechanistic link between
chronic inflammation, DNA damage and cancer.
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Figure 1.
The chemical biology of chronic inflammation. Illustration by Jeff Dixon, copyright Peter
Dedon.
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Figure 2.
Spectrum of nitrosative DNA damage products thought to arise at sites of inflammation.
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Figure 3.
Spectrum of guanine oxidation products caused by reactive oxygen and nitrogen species.
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Figure 4.
DNA halogenation products arising from inflammation.
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Figure 5.
Examples of DNA adducts arising from reactive electrophiles generated from oxidation of
lipids, DNA and carbohydrates.
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