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Multiple protein ubiquitylation events at DNA double strand breaks (DSBs) regulate 37 

damage recognition, signaling and repair. It has remained poorly understood how the 38 

repair process of DSBs is coordinated with the apoptotic response. Here, we identified 39 

the E4 ubiquitin ligase UFD-2 as a mediator of DNA damage-induced apoptosis in a 40 

genetic screen in Caenorhabditis elegans. We demonstrate that upon initiation of 41 

homologous recombination by RAD-51, UFD-2 forms foci that contain substrate 42 

processivity factors including the ubiquitin-selective segregase CDC-48(p97), the 43 

deubiquitylation enzyme ATX-3(Ataxin-3), and the proteasome. In the absence of UFD-44 

2, RAD-51 foci persist and DNA damage-induced apoptosis is prevented. In contrast, 45 

UFD-2 foci are retained until recombination intermediates are removed by the Holliday 46 

junction processing enzymes GEN-1, MUS-81 or XPF-1. UFD-2 foci formation also 47 

requires pro-apoptotic CEP-1(p53) signaling. Our findings establish a central role for 48 

UFD-2 in the coordination between the DNA repair process and the apoptotic response. 49 

 50 

INTRODUCTION 51 

DNA double strand breaks (DSBs) are highly cytotoxic and require the assembly of DNA 52 

damage signaling complexes and the DSB repair machinery at the DNA breaks 1. In the C. 53 

elegans germline DSBs are mainly repaired by homologous recombination (HR) 2. After 54 

initial processing of the damaged site, RAD-51 accumulates on single stranded DNA 55 

(ssDNA) overhangs and mediates strand invasion into the undamaged template, thus 56 

facilitating recombination and repair. Ultimately cruciform recombination intermediates 57 

called Holliday junctions (HJ) are formed 3. HJs can be processed by two major pathways: HJ 58 

dissolution via the combined action of the Bloom’s syndrome helicase and Topoisomerase 59 

TopoIIIα 4, or by resolution of HJs by nucleases acting as resolving enzymes 5. While HJ 60 

dissolution predominates in most systems 6,7, in C. elegans the GEN-1 resolvase is needed for 61 
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completion of HR repair of DSBs 8. The resolution of HR intermediates is important for the 62 

apoptotic response to DSBs as GEN-1 and HJ processing factors are required for DNA 63 

damage-induced programmed cell death. While the mechanisms for such regulation are not 64 

known yet, the C-terminal non-catalytic domain of GEN-1 appears to be important for DNA 65 

damage signaling 8,9. The apoptotic response to persistent DSBs facilitates the removal of 66 

germ cells in C. elegans when DSBs or meiotic recombination intermediates are not repaired, 67 

and occurs in the meiotic pachytene zone of the nematode germline 10. DNA damage 68 

checkpoint signaling leads to the activation of the C. elegans p53 homolog CEP-1 followed 69 

by the induction of apoptosis 11,12. CEP-1/p53 protein becomes available in the late pachytene 70 

region of the germline, leading to apoptosis competency of these germ cells. CEP-1 71 

expression in earlier stages of meiosis is translationally repressed by the conserved mRNA 72 

binding protein GLD-1 13. Thus, apoptosis is only initiated when aberrant meiotic 73 

recombination intermediates or ionizing radiation (IR)-induced DSBs persist in late pachytene 74 

cells. It remains, however, unclear how DNA damage processing by recombination repair is 75 

coordinated with the apoptosis pathway to allow sufficient time to resolve HR intermediates. 76 

In order to better understand how the apoptotic response to DSBs is regulated, we undertook a 77 

genetic screen in C. elegans for defects in the IR-induced germ cell apoptosis. RNAi 78 

knockdown and genetic mutation of ufd-2 resulted in a reduced apoptotic response. We 79 

demonstrate that upon initiation of HR by the recombinase RAD-51, UFD-2 forms foci that 80 

we define as ubiquitylation hubs as they also contain substrate CDC-48, ATX-3, and the 81 

proteasome. In the absence of UFD-2 or its catalytic activity, RAD-51 foci persist. Similarly 82 

to ufd-2 deficiency, elevated RAD-51 levels result in reduced apoptosis. When the resolution 83 

of HJs is hampered due to the absence of GEN-1, MUS-81, or XPF-1, UFD-2 foci persist. 84 

UFD-2 foci formation not only requires RAD-51 but also pro-apoptotic signaling through the 85 

C. elegans p53 homolog CEP-1. We thus propose that UFD-2 specific ubiquitylation hubs 86 
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link pro-apoptotic and DNA repair signaling to coordinate the apoptotic response with 87 

ongoing DSB repair activity. 88 

 89 

RESULTS 90 

Ligase activity of UFD-2 triggers DSB-induced apoptosis 91 

To identify new regulators of the apoptotic response to DNA damage, we performed an RNA 92 

interference (RNAi) screen targeting 770 genes whose transcription is enriched in the C. 93 

elegans germline 14 (Fig. 1a). We focused on those candidate genes because in C. elegans 94 

DNA damage induced apoptosis only occurs in germ cells 10,15. We identified the E4 ubiquitin 95 

ligase UFD-2 as the most prominent hit resulting from our screen. RNAi against ufd-2 led to a 96 

dose dependent reduction of IR induced apoptosis (Fig. 1b), a phenotype confirmed by 97 

analyzing the two different null alleles ufd-2(tm1380) and ufd-2(hh1) (Fig. 1c, d). In contrast, 98 

neither developmental apoptosis that occurs during the somatic development of the worm, nor 99 

physiological germ cell apoptosis, a background level of germ cell apoptosis that occurs 100 

independently of DNA damage, was defective in ufd-2 mutants (Supplementary Fig. 1a, b). 101 

UFD-2 participates in the ubiquitin fusion degradation (UFD) pathway that was first 102 

identified in budding yeast 16. Substrate ubiquitylation involves E1 ubiquitin activating, E2 103 

ubiquitin conjugating, and E3 ubiquitin ligase enzymes. UFD-2 defines a class of so-called E4 104 

enzymes, which further elongate pre-existing ubiquitin chains to facilitate efficient 105 

proteasomal degradation 17-20. It preferentially targets lysine residues 29 and 48 of ubiquitin 106 

for autoubiquitylation (Supplementary Fig. 1e). A P951A point mutation in the U-box 107 

domain completely blocks the ligase activity of UFD-2 21 (Fig. 1e). To determine if UFD-2 108 

catalytic activity was required for DNA damage-induced apoptosis, we transgenically 109 

expressed UFD-2::GFP or UFD-2P951A::GFP in the germline of wild-type or the ufd-2 deletion 110 
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background. Importantly, UFD-2::GFP expression fully restored the apoptotic DNA damage 111 

response in ufd-2(tm1380) mutant animals (Fig. 1f). In contrast, the catalytically dead mutant 112 

UFD-2P951A::GFP showed strongly reduced apoptosis after treatment with 60 Gy IR 113 

comparable to ufd-2 deletion mutant. Overexpression of UFD-2P951A::GFP in the wild-type 114 

background also caused defective apoptosis, which indicates that the inactive U-box mutant 115 

acts dominant-negatively in response to DNA damage (Fig. 1f).  116 

 117 

UFD-2 forms focal accumulations upon DSB induction 118 

To determine in vivo localization, we raised polyclonal antibodies that specifically recognize 119 

UFD-2 both by western blot analysis and immunofluorescence staining (Fig. 2a and 120 

Supplementary Fig. 2a). Using immunostaining, we found that under unperturbed conditions 121 

the protein was evenly distributed in the C. elegans germ line syncytium (Supplementary 122 

Fig. 2b). Commencing from late pachytene cells, UFD-2 accumulated at the nuclear periphery 123 

resulting in a ring-shaped staining pattern. After IR treatment, UFD-2 foci of varying size and 124 

number became detectable within the nucleoli (Fig. 2a, b and Supplementary Fig. 2b). The 125 

pattern of antibody staining was confirmed by GFP-tagged UFD-2 transgenes (Fig. 2c, d). 126 

These UFD-2 foci occurred in the mitotic zone (data not shown) as well as in the mid-late 127 

pachytene zone of the germline after IR (Supplementary Fig 2b). Given our interest in 128 

apoptosis we focused on UFD-2 foci formation in the pachytene region. Pachytene cells elicit 129 

DNA damage-induced apoptosis upon DNA damage checkpoint activation, whereas mitotic 130 

nuclei in the distal germ line compartment are subjected to cell cycle arrest 10. In contrast to 131 

the IR-induced apoptosis defect, the cell cycle arrest, which can be monitored by scoring the 132 

number of mitotic nuclei that are enlarged due to continuous growth of cellular and nuclear 133 

compartments in the absence of cell division (Supplementary Fig. 1c, d) 10,22, was normally 134 

induced in ufd-2 mutant animals, suggesting that the DNA damage checkpoint in general was 135 
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functional. Unlike IR-induced RAD-51 repair foci, which accumulate immediately upon 136 

damage induction, UFD-2 foci were not yet detectable 5 hrs following damage 137 

(Supplementary Fig. 2c, d). We therefore scored UFD-2 foci formation 24 hrs after IR, a 138 

time concurrent with full apoptosis activation 10, using both antibodies and GFP transgenes. 139 

The number of foci observed in pachytene cells increased from 0-5 foci per germline to more 140 

than 15 upon treatment with 60 Gy of IR (Fig. 2a-d and Supplementary Fig. 2b, c). 141 

Surprisingly, the ubiquitin ligase mutant was equally efficient in UFD-2 foci formation as the 142 

wild-type ligase (Fig. 2 c, d). Together, these data indicate that the UFD-2 ligase activity is 143 

required to trigger DNA damage-induced apoptosis (Fig. 1f), but is not necessary for UFD-2 144 

foci formation (Fig. 2c, d). 145 

 146 

Ubiquitin signaling fine-tunes the apoptotic response 147 

Given that UFD-2 triggers protein degradation 16,17,23, we examined if factors associated with 148 

the ubiquitin-proteasome system (UPS) might associate with UFD-2 foci 17,24,25. Hence, we 149 

analyzed ubiquitin localization 24 hrs after irradiation. In fact, an antibody recognizing 150 

conjugated mono- and polyubiquitin chains co-stained UFD-2 foci (Fig. 3a and 151 

Supplementary Fig. 3e). Additional staining experiments detected co-localization of the 152 

proteasome and the ubiquitin-selective segregase CDC-48 with UFD-2 foci (Fig. 3a). Among 153 

other processes, CDC-48/p97 has been established to coordinate the degradation of 154 

chromatin-associated proteins during DNA replication or DNA repair by extracting 155 

ubiquitylated substrate proteins from higher order complexes 26-28. As CDC-48 has been 156 

shown to interact with UFD-2 20, we wondered if the interaction was necessary for UFD-2 157 

dependent apoptotic signaling. Transgenic overexpression of UFD-2C448Y::GFP, a mutant 158 

version that provides ligase activity but is not able to interact with CDC-48 29, led to UFD-2 159 

foci even without IR treatment (Supplementary Fig. 3f-j). However, UFD-2C448Y::GFP failed 160 
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to rescue the apoptosis phenotype displayed by ufd-2 deletion worms (Fig. 3g), suggesting 161 

that in addition to ligase activity also the interaction with CDC-48 is a prerequisite for the 162 

apoptotic function of UFD-2. CDC-48 has been demonstrated to guide ubiquitin chain 163 

topology by coordinating different substrate processing enzymes such as UFD-2 and the 164 

deubiquitylation enzyme ATX-3 20. Intriguingly, we also found that ATX-3 localized to UFD-165 

2 foci (Fig. 3a and Supplementary Fig. 3c, d), which indicates an orchestrated action of 166 

UFD-2, ATX-3, and CDC-48 at ubiquitylation hubs triggered by DNA damage. The 167 

ubiquitylation activity of UFD-2 was dispensable for the recruitment of the proteasome, ATX-168 

3, and CDC-48 (Fig. 3b). In contrast, apoptosis induction required the catalytic activity of 169 

UFD-2 as well as its interaction with CDC-48 (Fig. 1e, f, and 3g). 170 

Given that in yeast and humans, Ufd2/UBE4B mediates elongation of preformed 171 

ubiquitin chains, we tested whether UFD-2 cooperates with the E3 ligase HECD-1, the 172 

ortholog of budding yeast Ufd4 and human HECTD1 or TRIP12, to trigger DNA damage 173 

induced apoptosis 17,30-32. Indeed, loss of HECD-1 prevented UFD-2 foci formation, 174 

suggesting ubiquitin-dependent recruitment of UFD-2 (Fig. 3c, d). Apoptosis was reduced in 175 

hecd-1 mutants, which implicates a role of UFD-2 focal accumulation in response to DNA 176 

damage (Fig. 3e). The apoptosis defect was even more pronounced in ufd-2; hecd-1 double 177 

mutants, indicating that the activity of both enzymes is required to achieve apoptosis (Fig. 178 

3e). In contrast, the deubiquitylation enzyme ATX-3 counteracted UFD-2 recruitment as both 179 

UFD-2 foci formation and apoptosis were increased in atx-3 mutants (Fig. 3c, d, f). 180 

Accordingly, the excessive DNA damage-induced apoptosis occurring in atx-3 mutants was 181 

suppressed in ufd-2; atx-3 double mutant worms (Fig. 3f). The number of ubiquitin foci per 182 

germline was decreased in hecd-1, whereas it was increased in atx-3 (Fig. 3c, d and 183 

Supplementary Fig. 3k). This observation suggests ubiquitin dependent formation of UFD-2 184 

foci, determined by ubiquitin-mediated recruitment signals fine-tuned by HECD-1 and ATX-185 
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3. We therefore conclude that the apoptotic response to DNA damage is coordinated by 186 

ubiquitylation signals defined by UFD-2 in cooperation with HECD-1 and ATX-3. 187 

 188 

UFD-2 supports RAD-51 dissociation from DNA repair sites  189 

Next we analyzed if UFD-2 also affects the DNA repair process in addition to apoptosis. In 190 

contrast to DSB induction by IR, UV irradiation did not result in formation of UFD-2 foci 191 

consistent with a specific role of UFD-2 in responding to DSBs (Supplementary Fig. 3a). In 192 

line with this observation, we found that RPA-1::GFP and BRD-1::GFP HR fusion proteins 193 

33,34 accumulate in UFD-2 foci 24 hrs after IR treatment (Fig. 4a, b). Furthermore, IR of L4 194 

staged ufd-2 mutant larvae resulted in reduced embryonic survival in the ensuing generation 195 

(Supplementary Fig. 3b). To establish whether ufd-2 promotes the processing of DNA repair 196 

intermediates, we analyzed the kinetics of RAD-51 foci. While both wild-type and ufd-2 197 

mutants accumulated an equal amount of RAD-51 positive nuclei one hour after IR, twice as 198 

many RAD-51 stained nuclei persisted 16 hrs later in ufd-2 mutants (Fig. 4c, d). This delay in 199 

RAD-51 foci dissociation that temporally coincides with UFD-2 foci formation suggests that 200 

UFD-2 contributes to resolution of repair intermediates.  201 

 202 

UFD-2 acts downstream of pro-apoptotic signaling 203 

We next wished to further investigate the role of the DSB repair process in UFD-2 foci 204 

formation (Fig. 4a). Impairment of HR in rad-51 deletion mutant worms blocked UFD-2 foci 205 

formation (Fig. 5b). Conversely, rad-54 deletion defective in removal of RAD-51 from DNA 206 

during HR repair 35 caused an accumulation of UFD-2 foci (Fig. 5b). The nucleases GEN-1, 207 

MUS-81 and XPF-1 are required for the resolution of HJs in order to complete the HR repair 208 

process of IR-induced DSBs 8,36,37. Deletion of the gen-1, mus-81, and/or xpf-1 HJ processing 209 

enzymes also led to focal accumulation of UFD-2 (Fig. 5c and Supplementary Fig. 4a). Of 210 
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note, mus-81 and xpf-1 mutant animals showed elevated numbers of UFD-2 foci also in the 211 

absence of IR-induced DSBs consistent with the function of MUS-81/XPF-1 in meiotic HJ 212 

resolution 36,37. These results indicate that HR needs to commence for UFD-2 foci to form, 213 

which persist until HR is completed (Fig. 5b, c).  214 

As ufd-2 mutant worms displayed reduced apoptosis, we assessed whether apoptotic 215 

signaling was affected in ufd-2 mutant worms. The apoptotic core machinery is conserved 216 

from C. elegans to the mammalian system. The p53 homologue CEP-1 induces transcription 217 

of the two BH3-only proteins EGL-1 and CED-13 13,38, which bind to the only Bcl2-like 218 

protein CED-9. As a consequence, the inhibitory effect of CED-9 on the Apaf1-like CED-4 is 219 

alleviated and CED-4 activates the caspase CED-3, which executes cell death (Fig. 5a) 39. In 220 

view of the ubiquitin ligase activity, we tested whether CEP-1 protein might accumulate upon 221 

DNA damage in the absence of UFD-2. However, in wild-type and ufd-2 mutant worms CEP-222 

1 protein was equally expressed following 60 Gy irradiation (Supplementary Fig. 4b-d). 223 

Additional evaluation of mRNA transcripts of the CEP-1 target gene egl-1 showed a 224 

comparable transcriptional regulation in both genotypes 4 and 24 hrs after damage infliction 225 

(Supplementary Fig. 4d). Having established that CEP-1 activation occurs independently of 226 

ufd-2, we wondered if UFD-2 foci formation might be dependent on CEP-1. Strikingly, loss 227 

of CEP-1 prevented UFD-2 foci induction after IR (Fig. 5d), whereas UFD-2 protein 228 

expression remained unaffected (Supplementary Fig. 5b). Consistently, a double mutant of 229 

the two pro-apoptotic CEP-1 effectors, egl-1; ced-13, which is similarly defective in DNA 230 

damage-induced apoptosis as cep-1 mutants 40,  phenocopied the cep-1 defect in UFD-2 foci 231 

formation after DNA damage (Fig. 5d and Supplementary Fig. 5a). To further confirm a 232 

direct role of CEP-1 in UFD-2 foci formation, we enhanced CEP-1 activity by employing a 233 

gld-1(op236) mutation, previously shown to increase CEP-1 levels 13. gld-1 mutants indeed 234 

displayed strongly elevated UFD-2 foci, supporting the idea that CEP-1 promotes UFD-2 235 
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focal accumulation. The cep-1; gld-1 double mutant displayed a similar number of UFD-2 236 

foci as wild-type germ cells (Fig. 5d and Supplementary Fig. 5a). One potential explanation 237 

for the failure of cep-1 to completely suppress the foci formation in gld-1 might be the 238 

numerous additional target mRNAs of GLD-1 41,42. Of note, the failure of cep-1 to initiate 239 

apoptosis does not affect repair activity as IR-induced embryonic lethality has previously 240 

been shown to remain unaffected 13. Consistently, we found that RAD-51 foci disassembly 16 241 

hrs after damage induction was as efficient in cep-1 and gld-1 mutants as in wild-type 242 

(Supplementary Fig. 5c). In contrast to the loss of CEP-1 signaling, UFD-2 foci formation 243 

was unaltered in apoptosis deficient ced-3 and ced-4 mutant worms (Fig. 5d), emphasizing 244 

the necessity of CEP-1 activity for UFD-2 foci formation rather than the apoptotic process in 245 

general. Taken together, UFD-2 seems to act downstream of the pro-apoptotic signaling 246 

cascade.  247 

 248 

Resolution of RAD-51 is linked to apoptotic signaling 249 

We next wished to investigate the role of UFD-2 in the removal of RAD-51 foci and its 250 

consequence on apoptosis. Germline-specific expression of UFD-2::GFP in transgenic ufd-2 251 

deletion mutants rescued the delay of RAD-51 removal from DNA (Fig. 6a). Increased RAD-252 

51 retention occurred in moderately RAD-51::GFP overexpressing worms after 24 hrs of IR 253 

compared to wild-type (Fig. 6a). Importantly, the retention of RAD-51 filaments either by 254 

loss of ufd-2 or by RAD-51 overexpression strictly correlated with reduced apoptosis levels 255 

(Fig. 6b). Despite the elevated RAD-51 protein levels, the GFP transgenic line possessed 256 

normal repair capacity as assessed by embryonic survival after IR thus suggesting that the 257 

reduced apoptosis is not related to enhanced removal of DSBs (Supplementary Fig. 6a). 258 

Conversely, the atx-3 mutant, which displayed increased UFD-2 foci and apoptosis after DNA 259 

damage, showed decreased RAD-51 retention 16 hrs after IR (Supplementary Fig. 6b). To 260 
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test whether elevated RAD-51 levels might directly account for the reduced apoptosis 261 

observed in ufd-2 mutants or upon overexpression of RAD-51, we depleted RAD-51 by RNAi 262 

knockdown. Indeed, rad-51(RNAi) in ufd-2 mutant or RAD-51::GFP expressing worms 263 

reverted the apoptosis defect following IR treatment (Fig. 6c). Importantly, rad-51(RNAi) 264 

also reduced embryonic survival after IR in wild-type and rad-51 mutant worms 265 

(Supplementary Fig. 6c). We further validated the role of RAD-51 filaments in suppressing 266 

the apoptotic response by inhibition of RAD-51 filament formation with the RAD-51 inhibitor 267 

B02 43. Similarly to reduced RAD-51 levels, treatment with B02 reverted the apoptosis 268 

phenotype of ufd-2 deletion mutants or the RAD-51 overexpression line (Fig. 6d), suggesting 269 

that RAD-51 accumulation directly antagonizes apoptotic signaling. Moreover, rad-51 270 

heterozygous mutants with reduced RAD-51 levels reverted the apoptosis defect of ufd-2 271 

mutants (Fig. 6e). In summary, these observations support the idea that UFD-2 contributes to 272 

resolution of DNA repair sites and that retention of RAD-51 filaments leads to inhibition of 273 

apoptosis (Fig. 6f).  274 

 275 

DISCUSSION 276 

In this study we uncovered a ubiquitin dependent process that facilitates the communication 277 

between DNA repair and the apoptotic response. We implicated the E4 ubiquitin ligase UFD-278 

2 as a central regulator for the spatiotemporal coordination of both processes. Our data 279 

suggest that defects in timely proceeding of HR either by failure to resolve HJs as previously 280 

demonstrated 8,9 or by aberrant retention of RAD-51 foci at the chromatin caused by loss of 281 

UFD-2 as shown here, halt the apoptotic response. Conversely, RAD-51 filament assembly 282 

and pro-apoptotic signaling by the p53 tumor suppressor homolog CEP-1 are both required 283 

for the formation of UFD-2-specific hubs that we define by the presence of proteolytic factors 284 

of the UPS machinery (Fig. 6f). We propose that these degradation hubs calibrate the 285 

proceeding of the DNA repair machinery with apoptotic activity via modulation of ubiquitin 286 
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signaling. Such a calibration might allow gaining time for ongoing HR repair when CEP-1 287 

dependent apoptotic signaling has already been triggered. Indeed, CEP-1 activity can be 288 

detected within the first hour following IR treatment 40, while the rapidly formed RAD-51 foci 289 

are turned over in the course of 24 hrs. To prevent the precocious demise of cells that are 290 

engaged in the process of repairing DSBs, the simultaneous presence of pro-apoptotic 291 

signaling and ongoing HR requires coordination, which we propose is orchestrated at the HR 292 

repair sites through the UFD-2-ubiquitin hubs that might thus provide feedback to the 293 

apoptotic signaling on the status of the damage removal. The fine-tuning of ubiquitin chain 294 

topology by concerted action of UFD-2, the E3 ligase HECD-1 and the hydrolase ATX-3 at 295 

HR sites might indeed constitute a versatile signaling tool to enable communication between 296 

the apoptotic response and DNA damage (Fig. 6f).  Since the E3 ligase HECD-1 is required 297 

for UFD-2 hub formation and apoptosis execution, we propose that E4 activity 17,31,44 is 298 

providing an additional layer of regulation by editing ubiquitin chain topology. The human E4 299 

homolog UBE4B cooperates similarly with the HECT domain E3 ligase TRIP12 in substrate 300 

ubiquitylation, suggesting the existence of a conserved signaling pathway 30. In support of this 301 

idea, TRIP12 fine-tunes ubiquitin controlled events at DSBs 45 and recent reports linked 302 

UBE4B to different cancer types, highlighting the relevance of ubiquitin signaling in the 303 

decision between DNA damage and apoptosis response 46-49. Disassembly of RAD-51 304 

filaments might involve the ubiquitin-selective segregase CDC-48/p97, which was recently 305 

implicated in chromatin associated protein degradation26,27. Moreover, Cdc48 was shown to 306 

limit RAD51 occupancy on DNA 50. In agreement with this notion, CDC-48 binding is 307 

required for UFD-2 to trigger DNA damage induced cell death (Fig. 3g).  Defects in DNA 308 

repair and apoptosis are especially relevant in tumor formation. Thus, understanding the 309 

conserved role of UFD-2/UBE4B in response to IR induced DNA damage might open new 310 

therapeutic directions for drug development and cancer treatment. 311 
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FIGURE LEGENDS 466 

Figure 1 Ubiquitin ligase activity of UFD-2 is required for apoptosis execution. (a) 467 

Schematic illustration of RNAi screen for identification of DNA damage-induced apoptosis 468 

mediators. After RNAi treatment worms were subjected to IR and scored for apoptotic 469 

corpses (indicated by filled arrowheads) 24 hrs later by differential interference contrast 470 

(DIC) microscopy. Representative images of 3 independent experiments. (b) Apoptotic 471 

corpses in worms treated with indicated RNAi constructs and exposed to different IR doses, 472 

24 hrs after treatment. Data represent mean ± s.e.m. of 3 independent experiments. n varied 473 

from 2-11 animals, see Supplementary Table 1. (c) Representative images of late pachytene 474 

cells of C. elegans germline 24 hrs after IR treatment (0, 60 Gy). Filled arrowheads indicate 475 

apoptotic corpses. Scale bar 5 µm. Representative images of 3 independent experiments. (d) 476 

Analysis of DNA damage induced apoptosis 24 hrs after IR treatment (0, 30 or 60 Gy)  of 477 

indicated genotypes. Center lines show the medians; box limits indicate the 25th and 75th 478 

percentiles as determined by R software; whiskers extend 1.5 times the interquartile range 479 

from the 25th and 75th percentiles, outliers are represented by dots. The notches are defined 480 

as +/-1.58*IQR/sqrt(n) and represent the 95% confidence interval for each median. Non-481 

overlapping notches give roughly 95% confidence that two medians differ. Data of 5 482 

independent experiments. n varied from 69-80 animals, see Supplementary Table 1. (e) 483 

Auto-ubiquitylation of UFD-2 with UFD-2 (wild-type) or UFD-2P951A as ubiquitin ligases. 484 

Representative immunoblot of 3 independent experiments. (f) Analysis of DNA damage 485 

induced apoptosis 24 hrs after IR treatment (0, 60 Gy) of indicated genotypes. Statistics as in 486 

Fig. 1d. Data of 3 independent experiments. n varied from 36-63 animals, see 487 

Supplementary Table 1. 488 

Figure 2 UFD-2 forms foci late after IR treatment. (a)  Representative images of worm 489 

germlines of indicated genotypes stained with α-UFD-2 antibody and DAPI 24 hrs after IR  490 
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treatment (60 Gy). Filled arrowhead indicate nuclei with UFD-2 foci. Scale bar, 5 µm. 491 

Representative images of 3 independent experiments and (b) corresponding quantification of 492 

UFD-2 foci in pachytene region of germlines. Data show means ± s.e.m. of 12 independent 493 

experiments. n = 231 animals (wt 0 Gy) and n = 280 animals (wt 60 Gy). (c)  Representative 494 

images of worm germlines of indicated genotypes stained with GFP-booster and DAPI 24 hrs 495 

after IR treatment (60 Gy). Filled arrowheads indicate nuclei with UFD-2 foci. Scale bar, 5 496 

µm. Representative images of 3 independent experiments and (d) corresponding 497 

quantification of UFD-2 foci in pachytene region of germlines. Data show means ± s.e.m. of 3 498 

independent experiments. n varied from 34-51 animals, see Supplementary Table 1.  499 

Figure 3 UPS factors accumulate in UFD-2 hubs and balance apoptotic signaling. 500 

Representative images of (a) ufd-2(tm1380); UFD-2::GFP and (b)  ufd-2(tm1380); UFD-501 

2P951A::GFP immunostained with indicated antibodies 24 hrs after IR (Gy 60). The boxed area 502 

is three times magnified (3x zoom). α-alpha SU, α-Proteasome 20S alpha subunits. Scale bars, 503 

5 µm. Representative images of 3 independent experiments. (c) Representative images of 504 

worm germlines of indicated genotypes immunostained with α-UFD-2 antibody and DAPI 24 505 

hrs after IR treatment (60 Gy). Filled and empty arrowhead indicated nuclei positive or 506 

negative for UFD-2 foci, respectively. Scale bar, 5 µm Representative images of 3 507 

independent experiments and (d) corresponding quantification of UFD-2 foci in pachytene 508 

region of germlines. Data show means ± s.e.m. of 3 independent experiments. n varied from 509 

36-107 animals, see Supplementary Table 1.  (e,f,g) Analysis of DNA damage induced 510 

apoptosis 24 hrs after IR treatment (0, 60 Gy) of indicated genotypes. Statistics as in Fig. 1d. 511 

Data of 3 independent experiments. n varied from 39-52 animals for (e), 38-51 animals for (f) 512 

and 34-74 animals for (g), see Supplementary Table 1. 513 

Figure 4 Loss of ufd-2 delays DSB repair processing. (a) Schematic illustration of DNA DSB 514 

repair by HR in C. elegans. Upon DSB induction RPA binds resected single stranded DNA, 515 
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BRD-1 acts together with BRCA-1 at DSB site, RPA is exchanged for RAD-51, which 516 

mediates strand invasion, Gen-1 resolves HJ resulting in repaired DSB. Names in brackets 517 

indicate human homologues. (b) Representative images of BRD-1::GFP and RPA-1::GFP 518 

germlines stained with α-UFD-2 and DAPI 24 hrs after IR treatment (60 Gy). Scale bar, 5 µm. 519 

Representative images of 3 independent experiments. (c) Representative images of wild-type 520 

and ufd-2(tm1380) germlines isolated 16 hrs after IR treatment (20 Gy), stained with α-RAD-521 

51 and DAPI. Filled arrowheads indicate nuclei positive for RAD-51 staining. Scale bar, 10 522 

µm. Representative images of 3 independent experiments. (d) Quantification of germ cells 523 

positive for RAD-51 staining of wild-type and ufd-2(tm1380) worms treated with IR (0 Gy) 524 

and isolated after 1hr or treated with IR (20 Gy) and isolated after 1, 7, 16, 48 hrs. Data show 525 

means ± s.e.m. of 3 independent experiments. n varied from 35-43 animals, see 526 

Supplementary Table 1.  The triple asterisk indicates P value of ≤ 0.001 in two-tailed 527 

Student’s t-test.  528 

Figure 5 UFD-2 foci in repair and apoptosis after DNA damage. (a) Schematic illustration of 529 

apoptosis pathway in C. elegans. Names in brackets indicate human homologues. (b,c,d) 530 

Quantification of UFD-2 foci in pachytene region of germlines of indicated genotypes 531 

isolated 24 hrs after irradiation (60 Gy). Data show means ± s.e.m. of 3 independent 532 

experiments. n varied from 30-113 animals for (b), 34-92 animals for (c) and 20-202 animals 533 

for (d), see Supplementary Table 1. 534 

Figure 6 UFD-2 coordinates communication between repair and apoptosis after DNA 535 

damage. (a) Quantification of germ cells positive for RAD-51 staining of indicated genotypes 536 

treated with IR (0 or 20 Gy) and isolated after 24 hrs. Data show means ± s.e.m. of 3 537 

independent experiments. n varied from 34-63 animals, see Supplementary Table 1.  The 538 

triple asterisk indicates P value of ≤ 0.001 in two-tailed Student’s t-test. (b) Analysis of DNA 539 

damage induced apoptosis 24 hrs after IR treatment (0, 60 Gy) of indicated genotypes. 540 
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Statistics as in Fig. 1d. Data of 3 independent experiments. n-values varied from 61-82 541 

animals, see Supplementary Table 1. (c,d,e) Analysis of DNA damage induced apoptosis 24 542 

hrs after IR treatment (0, 60 Gy) of (c) ufd-2 and RAD-51::GFP treated with rad-51 or control 543 

RNAi or (d) wild-type, ufd-2, and RAD-51::GFP worms treated with RAD51 inhibitor B02 544 

(200 mM) or (e) indicated genotypes. Statistics as in Fig. 1d. Data of 3 independent 545 

experiments. n-values varied from 30-47 animals for (c), 28-69 animals for (d) and 29-40 546 

animals for (e), see Supplementary Table 1. (f) Model for the coordination between HR and 547 

apoptotic signaling by UFD-2. DSB repair triggers RAD-51 accumulation at ssDNA to 548 

facilitate homology pairing. After efficient strand invasion RAD-51 is removed and HJ are 549 

resolved by HJ processing enzymes (GEN-1, MUS-81 and XPF-1). UFD-2 supports RAD-51 550 

dissociation from DSB at advanced time points. Ongoing repair is reflected by the presence of 551 

UFD-2 containing hubs late after IR. These ubiquitylation hubs contain processivity factors 552 

like CDC-48 and proteasome (not shown). Interaction between UFD-2 and CDC-48 is 553 

necessary to transduce a pro-apoptotic signal. UFD-2 hub formation is fine-tuned by the E3 554 

ligase HECD-1, the DUB ATX-3, and pro-apoptotic CEP-1/p53 signaling.  555 
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METHODS 556 

C. elegans strains. C. elegans strains were cultured at 20 °C on nematode growth medium 557 

(NGM) and fed with Escherichia coli (E. coli) strain OP50 according to standard procedures 558 

51. The Bristol strain N2 was used as wild-type. Mutants and transgenic animals used in this 559 

study are listed in the following: mus-81(tm1937) I, rad-54&snx-3(ok615) I/hT2 [bli-4(e937) 560 

let-?(q782) qIs48] (I;III), cep-1(lg12501)I, ced-1(e1735)I, gld-1(op236)I, ufd-2(tm1380)II, 561 

ufd-2(hh1)II, xpf-1(tm2842) II, gen-1(tm2940)III, ced-4(n1162) III, hecd-1(tm2371)IV, rad-562 

51(ok2218) IV/nT1[qIs51](IV;V), ced-3(n717) IV, atx-3(gk193)V, egl-1(n1084n3082)V; ced-563 

13(tm536)X, , Is[rad-51::GFP:3xFLAG], gla-3(op216)I, hus-1(op241)I, unc-119(ed3)III; 564 

gtIs[unc-119(+), Ppie-1::GFP::rpa-1::pie-1-3'UTR], hhIs121[unc-119(+), Pmex-5::ufd-565 

2::GFP::tbb-2 3'UTR], hhIs135[unc-119(+), Pmex-5 (w/o ATG)::ufd-2 (w/o TAA, 566 

P951A)::(Gly)5Ala::gfp F64LS65T(w introns/stop)::tbb-2 3'UTR], hhIs134[unc-119(+), 567 

Pmex-5::ufd-2 (C448Y)::GFP::tbb-2 3'UTR]. 568 

The transgenic lines hhIs121, hhIs134, and hhIs135 were generated for this study. Briefly, 569 

fosmid WRM0621dE05 was used as template to obtain the genomic sequence of ufd-2 that 570 

was cloned together with ppJA252, pJA257 into pCG150 containing the unc-119(+) marker 571 

for selection of transgenic worms 52. ufd-2 was modified by directed mutagenesis to create 572 

ufd-2P951A or ufd-2C448Y. The constructs were bombarded into unc-119(ed4)III mutants as 573 

described previously 53.  574 

No statistical method was used to predetermine sample size. The experiments were not 575 

randomized and were not performed with blinding to the conditions of the experiments. All n-576 

values are specified in Supplementary Table 1 (for data in Fig. 1-6) and Supplementary 577 

Table 2 (for data in Supplementary Fig. 1-6). 578 
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Ionizing radiation. Synchronized hermaphrodites were grown until L4 stage and irradiated 579 

with the corresponding dose (Radiation source: 120-kV X-rays (25 mA; 0.5mm Alu-filter; 580 

ISOVOLT 160 M1/10-55, GE Sensing & Inspection Technologies) or Biobeam 8000 using 581 

Cs137 as radiation source). 582 

RNAi treatment. RNA interference was performed using the feeding method 54. Three P0 583 

worms were placed on IPTG (isopropylthiogalactoside) and ampicillin-containing NGM-584 

plates seeded with E. coli [HT115(DE3)] expressing double-stranded RNA (dsRNA) and 585 

incubated at 15°C for 72 hrs. Three single F1 worms were transferred each to a new, freshly 586 

seeded plate and allowed to lay eggs for approximately 20 hrs. F1 worms were removed and 587 

F2 worms were allowed to grow up to the L4 stage, treated with ionizing radiation and 588 

analyzed for radiation induced apoptosis. Clones in RNAi feeding vectors were provided by 589 

Marc Vidal of Dana Farber Cancer Center. 590 

Apoptotic corpses. For physiological apoptosis analysis, synchronized L1 larvae were grown 591 

until L4 stage. Apoptotic corpses were scored 24 hrs later. For this, worms were mounted on 592 

3% agar pads, paralyzed with 60 nM NaN3 and analysed via DIC microscopy 55. For DNA 593 

damage induced apoptosis worms were subjected to IR at L4 stage before apoptosis was 594 

evaluated 24 hrs later. Developmental apoptosis was assessed in L1 larvae. Therefore worms 595 

were grown until day one adulthood. 100 worms were transferred to a NGM-agar plate 596 

without E. coli and allowed to lay eggs until they were removed after 1 hr. Freshly hatched L1 597 

larvae were scored for apoptotic corpses 56. 598 

UFD-2 foci. Synchronized worms were grown until L4 larvae stage and irradiated with 0 and 599 

60 Gy. 24 hrs later, germlines were isolated and immunostained. Number of UFD-2 foci was 600 

scored in all focal planes in pachytene germ cells. One germline per worm was scored. 601 
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Protein expression and purification. cDNAs encoding ufd-2b, ufd-2bC448Y, and ufd-2bP951A 602 

were cloned into the pET-21d expression vector (Novagen) and pGex4T1 (GE Healthcare). 603 

Recombinant proteins were expressed in E. coli strain BL21 Codon Plus (Novagen) and 604 

purified using the ÄKTA purifier system (GE Healthcare).  605 

Antibody production. His-tagged purified proteins (UFD-2, ATX-320) were used for 606 

immunization of rabbits and anti-sera were affinity purified using respective GST-tagged 607 

recombinant proteins (BioGenes). For validation see Supplementary Fig. 2a and 3d, 608 

respectively. 609 

Preparation of worm lysates. Synchronized L1 larvae were grown on NGM-agar plates with 610 

OP50 bacteria until they reached adulthood. Worm lysates used for SDS-PAGE were either 611 

prepared from a distinct number of worms (n=150) or by washing worms from NGM-agar 612 

plates followed by multiple washing step with M9 buffer [3 g/l KH2P04, 6 g/l Na2 HPO4, 5 613 

g/l NaCl, 1 mM Mg S04 (added after sterilization)], until bacteria were removed. The samples 614 

were heated to 95°C for 5 min and subsequently shock-frozen in liquid nitrogen. After 615 

thawing, samples were subjected to sonication (two times for 15 s, on ice; 50% power; 616 

Sonopuls UW 2200, Bandelin) and taken up in 4 x SDS sample buffer followed by 617 

centrifugation at 15,000 rpm for 10 min.  618 

Immunotechniques. Immunostaining of isolated germlines was done according to the 619 

‘freeze-crack’ protocol. Worms were dissected onto polylysine-coated slides (Thermo 620 

Scientific) in 60 nM NaN3 to isolate germlines and fixed in fixation buffer (3.7 % 621 

Formaldehyde, 0.2 % Tween 20) for 10 min with subsequent shock freezing in liquid 622 

nitrogen. This was followed by incubation in 1:1 mixture of methanol and acetone at -20 °C 623 

for 10 min. Germlines were permeabilized 3 times in 1 % PBS-Triton X-100 for 20 min 624 

followed by washing in 0.1 % PBS-Tween 20 (PBS-T) for 10 min and blocking in 10 % goat 625 



25 
 

serum in 0.1 % PBS-T. A specific staining protocol was followed for GFP-expressing lines 626 

avoiding freezing. Isolated germlines were fixed with fixation buffer for 10 min in PCR tubes, 627 

directly followed by permeabilization and blocking as described above. Germlines were 628 

incubated with primary antibody overnight at 4 °C (anti-UFD-2 1:3,000, anti-CDC-48 629 

1:12,000 57, anti-RAD-51 1:350 (14B4, #NB100-148, Novus Biologicals 58), anti-FK2-630 

ubiquitin 1:100 (AB_612093, #04-263, Millipore, validation on manufacturer’s website), anti-631 

Proteasome 20S alpha 1+2+3+5+6+7 antibody 1:300 (MCP231, #ab22674, abcam 59), anti-632 

ATX-3 1:700). Incubation with the fluorescently labeled secondary antibodies (#A-11037, 633 

#R37117, Life Technologies; 1:200) or GFP-booster (#GBA-488, ChromoTek; 1:400 60) was 634 

done at room temperature for 1 hr. Germlines were mounted in DAPI Fluoromount-G 635 

medium (SouthernBiotech). For western blotting, worm lysates were separated by SDS–636 

polyacrylamide gel electrophoresis (SDS–PAGE) and transferred to nitrocellulose membranes 637 

(Whatman, Protran). Membranes were blocked in 1x Roti-Block (Roth) and incubated with 638 

the primary antibodies overnight at 4 °C in Roti-Block (Roth; anti-ATX-3 1:10,000, anti-639 

CDC-48 1:50,00057, anti-UFD-2 1:20,000, anti-CEP 1:15,000 13, anti-tubulin 1:5000 (clone 640 

DM1A, Sigma-Aldrich 61). Incubation with fluorescently labeled secondary antibodies (LiCor 641 

IRDye 680, #926-32222 and #926-32223, LiCor IRDye 800, #926-32212 and #926-32213, 642 

1:10,000) was done at room temperature, before detection of signals using the Li-Cor 643 

Odyssey scanner. Quantification of signal intensities was done using the Odyssey V4.0 644 

software (Li-Cor). The uncropped versions of western blots that have been used to assemble 645 

the main figures are collected in Supplementary Fig. 7. 646 

Immunoprecipitation in vivo and in vitro. Worm lysates were prepared as described above 647 

and the protein concentration was determined by measuring absorption at 260nm with 648 

Nanodrop 800 UV/Vis Spectrometer. 250 µl of Dynabeads (Invitrogen) were used per 649 

reaction, washed twice with conjugation buffer [100 mM sodium phosphate, 0,15 M NaCl] 650 
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and resuspended in 1 ml 5 mM crosslinking reagent BS3 (Thermo Scientific). Crosslinking 651 

was performed on rotation wheel for 30 min at room temperature. The reaction was stopped 652 

by adding 50 µl quenching buffer [1 M Tris/HCL, pH 7.5] followed by 15 min incubation at 653 

room temperature. The beats were washed three times with 0.5 x PBS before 50 µg α-UFD-2 654 

antibody was added and incubated for 20 min under constant rotation at room temperature. 655 

After repeated washing with 0.5 x PBS, 2.5 mg of corresponding worm protein lysate was 656 

added to the beads and incubated over night at 4 °C with rotation. For in vitro 657 

immunoprecipitation, antigen (UFD-2) was incubated with antibody-coupled beads for 4 hrs 658 

prior to addition of the putative binding partner (CDC-48) for an additional incubation for 4 659 

hrs. Both proteins were added in equimolar ratio (1 mM). Elution was performed as described 660 

in the manufacturer’s manual. 661 

Microscopy and image acquisition. Immunostained germlines were imaged with 662 

AxioImager.M1/Z1 microscope with Apoptome equipped with an AxioCam MRm camera 663 

(Carl Zeiss). To allow direct comparison of signal intensities, images were recorded under 664 

identical conditions. Processing of selected pictures was done in ZEN2011 and ImageJ.  665 

In vitro ubiquitylation assay. UFD-2b::His, UFD-2bC448Y::GST, and UFD-2bP951A::His 666 

fusion proteins were expressed in BL21-AI E. coli strain and lysed in buffer A [50 mM Tris 667 

pH 7.5, 250 mM NaCl, 5 mM DTT, 1% Triton X-100, 2 mM PMSF and protease inhibitor 668 

mix; Roche]. 10 μg of the aforementioned bacterial lysate was mixed with E1 (25 ng), E2 669 

(Let-70; 400 ng), 2 μg of FLAG::ubiquitin, energy regenerating solution (Boston 670 

Biochemicals) and ubiquitin conjugation reaction Buffer (Enzo Life Sciences). Samples were 671 

incubated at 30 °C for 1.5 hrs, terminated by boiling for 5 min with SDS-sample buffer, and 672 

resolved by SDS-PAGE followed by immunoblotting using anti-UFD-2 antibodies to monitor 673 

ubiquitylation of UFD-2. 674 
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Persistence of RAD-51 foci after IR. Synchronized worms were grown until L4 larvae stage 675 

and irradiated with 0 and 20 Gy. 1 to 48 hrs later, germlines were isolated and 676 

immunostained. Z-stacks were taken of late pachytene cells of the germline. Two focal planes 677 

covering the upper and lower part of the germline were subjected to analysis by scoring each 678 

plane for RAD-51 positive cells in the last 25 nuclei of pachytene germ cells prior entering 679 

diakinesis. 680 

RNA isolation and real-time PCR. Total RNA was isolated using TRIzol (Invitrogen) and 681 

Qiagen RNeasy kit. Briefly, worms were washed off the plates using M9 buffer [3 g/l 682 

KH2P04, 6 g/l Na2 HPO4, 5 g/l NaCl, 1 mM Mg S04 (added after sterilization)] and 600 µl 683 

TRIzol, and silica beads (1 mm diameter) were added to the samples and homogenized by 684 

Precellys tissue homogeniser. Chloroform was added and samples were vortexed vigorously 685 

before phase separation through centrifugation. The aqueous phase was transferred on the 686 

Qiagen RNeasy Mini spin column and RNA was isolated according to manufacturer’s 687 

instructions. cDNA was synthesized using 200 ng total RNA and the High-Capacity cDNA 688 

Reverse Transcription Kit (Applied Biosystems). Gene expression levels were determined by 689 

real time PCR using Brilliant III Ultra-Fast SYBR Green QPCR Master Mix (Agilent 690 

Technologies) and Biorad CFX96 Real-Time PCR Detection System. Relative gene 691 

expressions were normalized to tbg-1 (F58A4.8) mRNA levels. In the experiment three 692 

biological and three technical replicate samples were analyzed. The primer sequences used in 693 

the RT–PCR reactions are the following: tbg-1 forward:  694 

5ʹ-GTACACTCCACTGATCTCTGCTGACAAG-3ʹ, tbg-1 reverse: 695 

 5ʹ-CTCTGTACAAGAGGCAAACAGCCATG-3ʹ 62, egl-1 forward:  696 

5ʹ-TACTCCTCGTCTCAGGACTT-3ʹ, egl-1 reverse: 5ʹ- CATCGAAGTCATCGCACAT-3ʹ. 697 

Embryonic Survival. To determine the radiation sensitivity, L4-stage hermaphrodites were 698 

irradiated with a single dose of IR as indicated. After 12 hrs, worms were transferred to fresh 699 
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plates (three worms per plate, five plates in total) and allowed to lay eggs for 5 hrs. After this 700 

period, adults were removed and 24 hrs later the number of hatched and unhatched embryos 701 

was scored (number of hatched larvae normalized to results after mock-treatment). As a 702 

control for embryonic survival, a heterozygous deletion mutant lacking rad-51 on one 703 

chromosome was used. 704 

B02 treatment. Synchronized L1 larvae were grown as liquid culture in S Medium with heat 705 

inactivated (3 x 5 min at 65 °C, vortexing inbetween) E. coli strain OP50 63, containing 200 706 

mM B02.  707 

Mitotic germ cell cycle arrest upon IR. Worms were irradiated with 0 and 60 Gy at the late 708 

L4 larval stage as described previously 10. 16 hours post-irradiation, worms were mounted on 709 

3% agar pads and paralyzed with 60 nM NaN3 for DIC microscopy and the distal region of 710 

the germline was scored for number of nuclei in all focal planes within a defined area of 2 μm 711 

x 6 μm. 712 

Statistical analysis. Statistical analysis was performed using Excel (Microsoft). Statistical 713 

significance was calculated with two-tailed paired Student’s t-test. Box plots were generated 714 

using BoxPlotR 64. Centre lines show the medians; box limits indicate the 25th and 75th 715 

percentiles as determined by R software; whiskers extend 1.5 times the interquartile range 716 

from the 25th and 75th percentiles, outliers are represented by dots. The notches are defined 717 

as +/-1.58*IQR/sqrt(n) and represent the 95% confidence interval for each median. Non-718 

overlapping notches give roughly 95% confidence that two medians differ. 719 
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