47 research outputs found

    Luminosity determination using Z boson production at the CMS experiment

    Get PDF
    Data Availability Statement - This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Release and preser vation of data used by the CMS Collaboration as the basis for publi cations is guidedbytheCMSpolicyasstatedinhttps://cms-docdb.cern. ch/cgibin/PublicDocDB/RetrieveFile?docid=6032&filename=CMSD ataPolicyV1.2.pdf&version=2. CMS data preservation,re-use and open access policy.]The measurement of Z boson production is presented as a method to determine the integrated luminosity of CMS data sets. The analysis uses proton–proton collision data, recorded by the CMS experiment at the CERN LHC in 2017 at a center-of-mass energy of 13 TeV . Events with Z bosons decaying into a pair of muons are selected. The total number of Z bosons produced in a fiducial volume is determined, together with the identification efficiencies and correlations from the same data set, in small intervals of 20 pb-1 of integrated luminosity, thus facilitating the efficiency and rate measurement as a function of time and instantaneous luminosity. Using the ratio of the efficiency-corrected numbers of Z bosons, the precisely measured integrated luminosity of one data set is used to determine the luminosity of another. For the first time, a full quantitative uncertainty analysis of the use of Z bosons for the integrated luminosity measurement is performed. The uncertainty in the extrapolation between two data sets, recorded in 2017 at low and high instantaneous luminosity, is less than 0.5%. We show that the Z boson rate measurement constitutes a precise method, complementary to traditional methods, with the potential to improve the measurement of the integrated luminosity.SCOAP

    Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton-proton collisions at root s=13TeV

    Get PDF
    A search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks is performed in proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the LHC. The analyzed data sample corresponds to an integrated luminosity of 35.9 fb(-1). The signal is characterized by a large missing transverse momentum recoiling against a bottom quark-antiquark system that has a large Lorentz boost. The number of events observed in the data is consistent with the standard model background prediction. Results are interpreted in terms of limits both on parameters of the type-2 two-Higgs doublet model extended by an additional light pseudoscalar boson a (2HDM+a) and on parameters of a baryonic Z simplified model. The 2HDM+a model is tested experimentally for the first time. For the baryonic Z model, the presented results constitute the most stringent constraints to date.Peer reviewe

    A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution

    Get PDF
    We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton-proton collisions at an energy of s = 13 TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb - 1 . A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ÂŻ

    A search for new physics in central exclusive production using the missing mass technique with the CMS detector and the CMS-TOTEM precision proton spectrometer

    Get PDF
    Data availability statement: This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by theCMSpolicy as stated in https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=6032filename=CMSDataPolicyV1.2.pdfversion=2 CMS data preservation, re-use and open access policy.]Copyright © CERN for the benefit of the CMS and TOTEM collaborations 2023. A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X, pp→pp+Z/Îł+X, in proton-tagged events from proton–proton collisions at s√=13TeV, recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600–1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. Model-independent upper limits on the visible production cross section of pp→pp+Z/Îł+X are set.Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development

    Azimuthal correlations in Z +jets events in proton–proton collisions at √s = 13 TeV

    Get PDF
    Data Availibility Statement: This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as stated in https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=6032 &filename=CMSDataPolicyV1.2.pdf &version=2. CMS data preservation, re-use and open access policy.]A preprint version of the article was made available at arXiv, arXiv:2210.16139 [hep-ex] It was replaced with the published version. All the figures and tables can be found at: https://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-21-003 (CMS Public Pages).Report number: CMS-SMP-21-003, CERN-EP-2022-178.Copyright © CERN for the benefit of the CMS Collaboration 2023. The production of Z bosons associated with jets is measured in pp collisions at √s = 13 TeV with data recorded with the CMS experiment at the LHC corresponding to an integrated luminosity of 36.3 fb-1 . The multiplicity of jets with transverse momentum pT>30GeV is measured for different regions of the Z boson’s pT(Z) , from lower than 10 GeV to higher than 100 GeV . The azimuthal correlation Δϕ between the Z boson and the leading jet, as well as the correlations between the two leading jets are measured in three regions of pT(Z) . The measurements are compared with several predictions at leading and next-to-leading orders, interfaced with parton showers. Predictions based on transverse-momentum dependent parton distributions and corresponding parton showers give a good description of the measurement in the regions where multiple parton interactions and higher jet multiplicities are not important. The effects of multiple parton interactions are shown to be important to correctly describe the measured spectra in the low pT(Z) regions.SCOAP3

    Measurement of the production cross section for a W boson in association with a charm quark in proton–proton collisions at √s=13TeV

    Get PDF
    Data Availability: This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as stated in https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=6032 &filename=CMSDataPolicyV1.2.pdf &version=2. CMS data preservation, re-use and open access policy].A preprint version of the article is available at arXiv: https://arxiv.org/abs/2308.02285 .The strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton–proton collisions at a center-of-mass energy of 13 TeV . The analysis uses a data sample corresponding to a total integrated luminosity of 138 fb-1 collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The W + c production cross section and the cross section ratio Rc±=σ(W++cÂŻ)/σ(W-+c) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in Rc±=0.950±0.005(stat)±0.010(syst) . The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics.SCOAP

    Measurements of jet multiplicity and jet transverse momentum in multijet events in proton–proton collisions at √s = 13 TeV

    Get PDF
    Data availability statement: This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as stated in https://cms-docdb.cern.ch/cgibin/PublicDocDB/RetrieveFile?docid=6032 &filename=CMSDataPolicyV1.2.pdf &version=2 CMS data preservation, re-use and open access policy.]A preprint version of the article was made available at arXiv, arXiv:2210.13557 [hep-ex]. It was replaced with the published version. All the figures and tables can be found at: https://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-21-006 (CMS Public Pages).Report number: CMS-SMP-21-006, CERN-EP-2022-144Copyright © CERN for the benefit of the CMS collaboration 2023. Multijet events at large transverse momentum (pT) are measured at √s = 13 TeV using data recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 36.3fb-1 . The multiplicity of jets with pT>50GeV that are produced in association with a high- pT dijet system is measured in various ranges of the pT of the jet with the highest transverse momentum and as a function of the azimuthal angle difference Δϕ1 , 2 between the two highest pT jets in the dijet system. The differential production cross sections are measured as a function of the transverse momenta of the four highest pT jets. The measurements are compared with leading and next-to-leading order matrix element calculations supplemented with simulations of parton shower, hadronization, and multiparton interactions. In addition, the measurements are compared with next-to-leading order matrix element calculations combined with transverse-momentum dependent parton densities and transverse-momentum dependent parton shower.SCOAP3

    Search for dark matter produced in association with a leptonically decaying Z boson in proton–proton collisions at s√=13TeV

    Get PDF
    A search for dark matter particles is performed using events with a Z boson candidate and large missing transverse momentum. The analysis is based on proton–proton collision data at a center-of-mass energy of 13TeV, collected by the CMS experiment at the LHC in 2016–2018, corresponding to an integrated luminosity of 137fb−1. The search uses the decay channels Z→ee and Z→ΌΌ. No significant excess of events is observed over the background expected from the standard model. Limits are set on dark matter particle production in the context of simplified models with vector, axial-vector, scalar, and pseudoscalar mediators, as well as on a two-Higgs-doublet model with an additional pseudoscalar mediator. In addition, limits are provided for spin-dependent and spin-independent scattering cross sections and are compared to those from direct-detection experiments. The results are also interpreted in the context of models of invisible Higgs boson decays, unparticles, and large extra dimensions.SCOAP

    Measurement of the mass dependence of the transverse momentum of lepton pairs in Drell–Yan production in proton–proton collisions at √s = 13TeV

    Get PDF
    Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as stated in https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=6032 &filename=CMSDataPolicyV1.2.pdf &version=2 CMS data preservation, re-use and open access policy.]A preprint version of the article is available at arXiv:2205.04897v2 [hep-ex], https://arxiv.org/abs/2205.04897v2. Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-20-003 (CMS Public Pages). Report number: CMS-SMP-20-003, CERN-EP-2022-053.The double differential cross sections of the Drell–Yan lepton pair (ℓ+ℓ- , dielectron or dimuon) production are measured as functions of the invariant mass mℓℓ , transverse momentum pT(ℓℓ) , and φη∗ . The φη∗ observable, derived from angular measurements of the leptons and highly correlated with pT(ℓℓ) , is used to probe the low- pT(ℓℓ) region in a complementary way. Dilepton masses up to 1 TeV are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various mℓℓ ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3 fb-1 of proton–proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV . Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation.SCOAP3
    corecore