76 research outputs found

    Finite-time singularity formation at a magnetic neutral line in Hall magnetohydrodynamics

    Get PDF
    The formation of a current sheet in a weakly collisional plasma can be modelled as a finite-time singularity solution of magnetohydrodynamic equations. We use an exact self-similar solution to confirm and generalise a previous finding that, in sharp contrast to two-dimensional solutions in standard MHD, a finite-time collapse to a current sheet can occur in Hall MHD. We derive a criterion for the finite-time singularity in terms of initial conditions, and we use an intermediate asymptotic solution for the evolution of an axial magnetic field to obtain a general expression for the singularity formation time. We illustrate the analytical results by numerical solutions

    Steady and unsteady visco-resistive reconnection in the presence of the Hall effect

    Get PDF
    In this thesis we investigate the effects of viscosity and the Hall effect on magnetic reconnection. Magnetic reconnection is a process of releasing large amounts of magnetic energy as observed in solar flares. In the first two chapters, we describe the basic mathematics and early models of reconnection. In Chapter 3, we search for a visco-resistive length scale in reconnection solutions. This is demonstrated in reconnective annihilation and a quasi-one-dimensional series expansion. We find that the visco-resistive length scale appears organically unless a specific geometry is chosen. Upon adding small scale perturbations, the visco-resistive length scale always appears. In Chapter 4, we build on Litvinenko’s (2007) self-similar solution that showed singularities appear with a Hall MHD X-point geometry for a certain set of initial conditions. These singularities signal current sheet formation. We consider a general set of initial conditions and find that the singularities will form in this self-similar solution unless the axial field is many orders of magnitude larger than the planar field. In Chapter 5, we review the Craig and McClymont (1991) linear, oscillatory model of reconnection. In Chapter 6, we attempt to quantify a general model that includes viscosity, pressure and axial effects, the Hall effect and electron inertia. We perform a dimensional analysis to find order-of magnitude estimates for how the aforementioned effects perturb the Craig and McClymont (1991) solution. We verify these estimates with numerical simulations. In Chapter 7, we give an overview of the thesis and make suggestions for future work

    Hall MHD and electron inertia effects in current sheet formation at a magnetic neutral line

    Get PDF
    An exact self-similar solution is used to investigate current sheet formation at a magnetic neutral line in incompressible Hall magnetohydrodynamics. The collapse to a current sheet is modelled as a finite-time singularity in the solution for electric current density at the neutral line. We establish that a finite-time collapse to the current sheet can occur in Hall magnetohydrodynamics, and we find a criterion for the finite-time singularity in terms of the initial conditions. We derive an asymptotic solution for the singularity formation and a formula for the singularity formation time. The analytical results are illustrated by numerical solutions, and we also investigate an alternative similarity reduction. Finally, we generalise our solution to incorporate resistive, viscous and electron inertia terms

    Detection of reduced carbon in a basalt analogue for martian nakhlite : a signpost to habitat on Mars

    Get PDF
    C. W. Taylor and J. Still are thanked for skilled technical support. J. Parnell, H.G.M. Edwards, I. Hutchinson and R. Ingley acknowledge the support of the UKSA and the STFC Research Council in the UK ExoMars programme. L. V. Harris and S. McMahon acknowledge STFC studentship funding.Peer reviewedPublisher PD

    Female and male Leach\u27s Storm Petrels (Hydrobates leucorhous) pursue different foraging strategies during the incubation period

    Get PDF
    Reproduction in procellariiform birds is characterized by a single egg clutch, slow development, a long breeding season and obligate biparental care. Female Leach\u27s Storm Petrels Hydrobates leucorhous, nearly monomorphic members of this order, produce eggs that are between 20 and 25% of adult bodyweight. We tested whether female foraging behaviour differs from male foraging behaviour during the ~ 44-day incubation period across seven breeding colonies in the Northwest Atlantic. Over six breeding seasons, we used a combination of Global Positioning System and Global Location Sensor devices to measure characteristics of individual foraging trips during the incubation period. Females travelled significantly greater distances and went farther from the breeding colony than did males on individual foraging trips. For both sexes, the longer the foraging trip, the greater the distance. Independent of trip duration, females travelled farther, and spent a greater proportion of their foraging trips prospecting widely, as defined by behavioural categories derived from a hidden Markov Model. For both sexes, trip duration decreased with date. Sex differences in these foraging metrics were apparently not a consequence of morphological differences or spatial segregation. Our data are consistent with the idea that female foraging strategies differed from male foraging strategies during incubation in ways that would be expected if females were still compensating for egg formation

    Monitoring Keap1-Nrf2 interactions in single live cells

    Get PDF
    AbstractThe transcription factor NF-E2 p45-related factor 2 (Nrf2) and its negative regulator Kelch-like ECH associated protein 1 (Keap1) control the expression of nearly 500 genes with diverse cytoprotective functions. Keap1, a substrate adaptor protein for Cullin3/Rbx1 ubiquitin ligase, normally continuously targets Nrf2 for degradation, but loses this ability in response to electrophiles and oxidants (termed inducers). Consequently, Nrf2 accumulates and activates transcription of its downstream target genes. Many inducers are phytochemicals, and cruciferous vegetables represent one of the richest sources of inducer activity among the most commonly used edible plants. Here we summarize the discovery of the isothiocyanate sulforaphane as a potent inducer which reacts with cysteine sensors of Keap1, leading to activation of Nrf2. We then describe the development of a quantitative Förster resonance energy transfer (FRET)-based methodology combined with multiphoton fluorescence lifetime imaging microscopy (FLIM) to investigate the interactions between Keap1 and Nrf2 in single live cells, and the effect of sulforaphane, and other cysteine-reactive inducers, on the dynamics of the Keap1–Nrf2 protein complex. We present the experimental evidence for the “cyclic sequential attachment and regeneration” or “conformation cycling” model of Keap1-mediated Nrf2 degradation. Finally, we discuss the implications of this mode of regulation of Nrf2 for achieving a fine balance under normal physiological conditions, and the consequences and mechanisms of disrupting this balance for tumor biology

    Immune or genetic-mediated disruption of CASPR2 causes pain hypersensitivity due to enhanced primary afferent excitability

    Get PDF
    Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2 ) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2 mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability

    Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework

    Get PDF
    We show that a hydrogen-bonded framework, TBAP-α, with extended π-stacked pyrene columns has a sacrificial photocatalytic hydrogen production rate of up to 3108 μmol g-1 h-1. This is the highest activity reported for a molecular organic crystal. By comparison, a chemically-identical but amorphous sample of TBAP was 20-200 times less active, depending on the reaction conditions, showing unambiguously that crystal packing in molecular crystals can dictate photocatalytic activity. Crystal structure prediction (CSP) was used to predict the solid-state structure of TBAP and other functionalised, conformationally-flexible pyrene derivatives. Specifically, we show that energy-structure-function (ESF) maps can be used to identify molecules such as TBAP that are likely to form extended π-stacked columns in the solid state. This opens up a methodology for the a priori computational design of molecular organic photocatalysts and other energy-relevant materials, such as organic electronics

    Association of ACTN3 R577X but not ACE I/D gene variants with elite rugby union player status and playing position

    Get PDF
    We aimed to quantify the ACE I/D and ACTN3 R577X (rs1815739) genetic variants in elite rugby athletes (rugby union and league), compare genotype frequencies to controls and between playing positions. The rugby athlete cohort consisted of 507 Caucasian men, including 431 rugby union athletes that for some analyses were divided into backs and forwards and into specific positional groups: front five, back row, half backs, centers and back three. Controls were 710 Caucasian men and women. Real-time PCR of genomic DNA was used to determine genotypes using TaqMan probes and groups were compared using Chi-square and odds ratio (OR) statistics. Correction of p-values for multiple comparisons was according to Benjamini-Hochberg. There was no difference in ACE I/D genotype between groups. ACTN3 XX genotype tended to be underrepresented in rugby union backs (15.7%) compared to forwards (24.8%; P=0.06). Interestingly, the 69 back three players (wings and full backs) in rugby union included only six XX genotype individuals (8.7%), with the R allele more common in the back three (68.8%) than controls (58.0%; χ2=6.672, P=0.04; OR=1.60) and forwards (47.5%; χ2=11.768, P=0.01; OR=2.00). Association of ACTN3 R577X with playing position in elite rugby union athletes suggests inherited fatigue resistance is more prevalent in forwards while inherited sprint ability is more prevalent in backs, especially wings and full backs. These results also demonstrate the advantage of focusing genetic studies on a large cohort within a single sport, especially when intra-sport positional differences exist, instead of combining several sports with varied demands and athlete characteristics
    corecore