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Preface

Some of the work presented in this thesis has been published in peer-reviewed
journals.

Chapter 3 was published as a paper (McMahon, 2017). In this thesis, we
have added Section 3.4 and 3.5 that describe the Craig-Henton reconnective
annihilation model and its extension into three dimensions respectively. These
chapters are necessary for understanding Section 3.8, in which we search for a
visco-resistive length scale in flux pile-up models, but are not original deriva-
tions and hence were not part of the published article.

Chapter 4 was first published as a letter (Litvinenko and McMahon, 2015a)
then in more depth as a paper (Litvinenko and McMahon, 2015b). The let-
ter (Litvinenko and McMahon, 2015a) comprises Sections 4.1-4.4, while the
paper (Litvinenko and McMahon, 2015b) comprises Sections 4.1-4.6. The ex-
tra sections in the latter are an alternative formulation and an extension into
electron inertia effects. While we used asympotic solutions to approximate a
singularity time, Janda (2018, 2019) and Brizard (2019) extended our work
to derive exact solutions in terms of the Weierstrass Elliptic Function and the
Jacobi Elliptic Function respectively. These solutions are described in Section
4.7.

Chapter 6 was published as a paper (McMahon, 2019). The only addition
to this thesis is Subsection 6.3.3 which describes an approximation using a

Hypergeometric function.



Abstract

In this thesis we investigate the effects of viscosity and the Hall effect on
magnetic reconnection. Magnetic reconnection is a process of releasing large
amounts of magnetic energy as observed in solar flares. In the first two chap-
ters, we describe the basic mathematics and early models of reconnection.

In Chapter 3, we search for a visco-resistive length scale in reconnection
solutions. This is demonstrated in reconnective annihilation and a quasi-one-
dimensional series expansion. We find that the visco-resistive length scale
appears organically unless a specific geometry is chosen. Upon adding small
scale perturbations, the visco-resistive length scale always appears.

In Chapter 4, we build on Litvinenko’s (2007) self-similar solution that
showed singularities appear with a Hall MHD X-point geometry for a certain
set of initial conditions. These singularities signal current sheet formation.
We consider a general set of initial conditions and find that the singularities
will form in this self-similar solution unless the axial field is many orders of
magnitude larger than the planar field.

In Chapter 5, we review the Craig and McClymont (1991) linear, oscillatory
model of reconnection. In Chapter 6, we attempt to quantify a general model
that includes viscosity, pressure and axial effects, the Hall effect and electron
inertia. We perform a dimensional analysis to find order-of-magnitude esti-
mates for how the aforementioned effects perturb the Craig and McClymont
(1991) solution. We verify these estimates with numerical simulations.

In Chapter 7, we give an overview of the thesis and make suggestions for

future work.
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Chapter 1

Introduction

1.1 Solar Flares

In 1859, Carrington and Hodgson observed a white flare of light emanating
from the sun, followed by a critical failure of telegraph systems all over North
America and Europe. What they saw we now know to be a solar flare (along
with a Coronal Mass Ejection), which if it ever were to occur again on the
same scale could have a devastating impact on 21st century technology. Of
course, not all flare events are potential doomsday scenarios, but smaller flares
could have an important effect on satellites or could pose a potential hazard
to astronauts.

Solar flares are huge eruptions of energy that can release up to 10?° J in
a time period of the order 100 seconds. While large-scale flare events could
pose a significant danger for Earth, accurate flare forecasting remains elusive.
In fact, the mechanism behind solar flares - magnetic reconnection - has many
fundamental aspects which remain unresolved. As its main purpose, this thesis
seeks to examine and illuminate the mysterious mechanisms behind magnetic
reconnection.

To understand the context within which solar flares manifest, the physical
environment of the sun needs to be considered. The four outer regions of

the sun comprise the photosphere, chromosphere, transition region and the
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Figure 1.1: A cross-sectional representation of the layers of the Sun

corona, whereas the inner regions are composed of the core, the radiative

zone and the convection zone (displayed in Fig. 1.1). The solar corona is the

outermost region and it is here that most solar flares occur. Fig. 1.2 shows

how reconnection can occur in the corona. Surprisingly, the corona is actually

hotter than the other outer regions even though they are closer to the core.

In this thesis, we will focus almost exclusively on events which occur within

coronal plasmas.

Region Density (g cm™3) | Temperature (K) | Thickness (km)
Photosphere 1079 4000-6500 300
Chromosphere 10712 4000-8500 2000
Transition Region 10713 —1071° 8000-500,000 100
Surface of the Earth 1073 300 30

We model the plasma in the solar corona using the Magnetohydrodynamic

(MHD) equations (see e.g. Priest and Forbes, 2000; Biskamp, 2000).

The
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Figure 1.2: Schematic drawing of magnetic reconnection occurring in the Solar

Corona. Oppositely directed coronal loops are forced together in the (red)

reconnection region.

MHD model unites Maxwell’s equations for magnetism and the fluid dynamic
equations for conservation of momentum and mass. The MHD equations are
highly non-linear and intractable to solve without some simplifying assump-
tions. Thus, we are always going to be limited in the applicability of our results

in some capacity.

1.2 Magnetic Reconnection

In the ideal MHD model resistivity is zero, and magnetic field lines are frozen
into the plasma and are not allowed to break. As magnetic field lines move
and are twisted into complex topological arrangements, we obtain a build up
of magnetic energy. If the magnetic gradient between the field lines becomes
sufficiently large, the ideal MHD properties no longer apply, and the field
lines are said to break and reconnect into simpler, lower energy topological

arrangements (see Fig. 1.3). During this process the magnetic energy stored
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Figure 1.3: Breaking and reconnecting of field lines. The red area represents
a current sheet where the local current is sufficiently large that ideal MHD

properties no longer apply.

in the field lines is released as kinetic energy.

The reconnection model is necessarily dependent on non-ideal terms in
Ohm’s law, namely the resistivity 7. In dimensionless units n ~ 107145 in the
corona; this is small enough to allow sufficient magnetic energy to build up in
field lines before reconnection, but also results in a dissipation rate that is far
too small to match with physical observations. Resistive diffusion would take
the order of a million years to dissipate the amount of energy observed in a
typical flare. In reality, flares erupt on a time scale of the order 100 seconds (e.g.
Priest and Forbes, 2000). The need to account for this discrepancy between
the predicted rate and the observed rapid energy release is the driving force of
this thesis.

Owing to the small magnitude of resistive effects, we turn to other non-
ideal terms in the MHD equations. For instance, the Hall effect was shown,
in numerical simulations, to improve reconnection rates (e.g. Birn et al., 2001,
2005; Shay et al., 2001; Drake et al., 2008). However, more recent studies have
found that it is instead viscous diffusion that could be responsible for the rapid
release of energy solar flares (Craig et al., 2005; Armstrong et al., 2011). Even
if this were not the case, viscosity still plays a vital role in reconnection due to
the overwhelming magnitude of viscous terms in the solar corona in comparison
to resistive terms (Hollweg, 1985). Finally, while 2D reconnection has been

well studied, perhaps the most exciting new area for research is generalising



2D results into a full 3D geometry. Due to the mathematical complexity of
a full 3D model, we stay within the realms of what is known as “2.5D”. In
2.5D, we consider all three dimensions but there is no dependence on the third,
taken to be z, dimension. That is to say, all partial derivatives with respect
to z vanish or 9, = 0. We leave full 3D effects for further research.

In order to break the flux frozen-in condition we require currents of the

order n~*

in a length scale of /7, which naturally leads us to the notion of
a current sheet being the site for reconnection. Outside the current sheet,
the plasma is governed by large-scale ideal MHD dynamics. Thus, magnetic
reconnection problems naturally lend themselves to asymptotic analysis.
Magnetic reconnection has been observed in the solar corona (see e.g. As-
chwanden, 2006; Shibata and Magara, 2011, for a review). Magnetic reconnec-

tion also has other applications outside the sun. For example, reconnection in

the Earth’s magnetosphere enhances aurorae (e.g. Case et al., 2017).

1.3 Thesis Outline

In the following chapter, we outline the mathematical framework required to
understand magnetic reconnection. We introduce the MHD equations, includ-
ing the non-ideal effects of resistivity, viscosity, the Hall effect and electron
inertia. We detail the motivation for reconnection, the flux frozen-in condition
and show how it is able to be broken at a current sheet.

To establish the necessary conceptual framework for the original research
presented later in the thesis, we explore three reconnection models: the Sweet-
Parker (Parker, 1957) model for steady reconnection; the Imshennik and Sy-
rovatskii (1967) solution for current sheet formation, and the Forbes (1982) un-
steady reconnection approach. Sweet-Parker establishes an archetypal model
of reconnection at a current sheet formed by a magnetic X-point, while the
Imshennik and Syrovatskii (1967) model demonstrates current sheet formation

by means of a singularity. Finally, the Forbes (1982) model of one-dimensional



unsteady reconnection resolves the singularity via resistive or gas pressure ef-
fects

In Chapter 3, we search for a visco-resistive length scale in magnetic flux
pile-up solutions and for steady reconnecting current sheets. We review the
viscous modifications to the fundamental (Sonnerup and Priest, 1975) pile-up
solution, namely the Gratton et al. (1990); Besser et al. (1990); Phan and
Sonnerup (1990); Jardine et al. (1992) solutions. Flux-pile up solutions were
later shown to be able to incorporate reconnective effects (Craig and Henton,
1995), which lead to viscous reconnective annihilation (e.g. Fabling and Craig,
1996; Craig and Litvinenko, 2012) in which a visco-resistive length scale was
nowhere to be found. By extending a generalised Craig-Henton type solution
(Priest et al., 2000; Craig and Watson, 2005) we were able to demonstrate
that a visco-resistive length scale would be inevitable for even an infinitely
small non-linear perturbation of any steady reconnective model. Furthermore,
we perform a series expansion (e.g. Cowley, 1975; Priest and Cowley, 1975;
Biskamp, 1986; Jamitzky and Scholer, 1995) of a steady reconnecting current
sheet and demonstrate that, apart from one very specific choice of initial cur-
rent profile, a visco-resistive length scale will appear.

In Chapter 4, we observe the temporal evolution of current at an X-point.
Chapman and Kendall (1963) showed that current will evolve exponentially
in an incompressible, ideal plasma. This solution was extended to include
resistive effects (Uberoi, 1963) and compressibility (Imshennik and Syrovatskii,
1967). Litvinenko (2007) demonstrated that including the Hall effect leads
to a finite-time singularity in a self-similar solution for the evolution of the
magnetic and velocity fields. Here, we expand upon Litvinenko’s solution
by considering a general set of initial conditions in 2.5D and find that the
finite time-singularity will occur unless the axial magnetic field is d; '
times larger than the planar field. We note that near the singularity, our
self-similar approximation is no longer valid and the current does not actually

become singular, we simply end up with very high currents in very short length



scales, or in other words we have current sheet formation.

In Chapter 5, we review the Craig and McClymont (1991) model for purely
resistive linear reconnection. Linearising the resistive MHD equations around
a static X-point produces oscillatory reconnection. Energy is released in three
phases: an initial implosive phase described by advective waves, the important
oscillatory phase and finally a long-time tail of slow energy release. We review
the modifications of azimuthal effects, pressure effects (Craig and McClymont,
1993) and higher order equilibrium X-points (Craig, 1994).

In Chapter 6, we generalise the linear reconnection model to include viscos-
ity (Craig et al., 2005), the Hall effect (Senanayake and Craig, 2006a; Craig and
Litvinenko, 2008) and axial effects (Craig and McClymont, 1993). Our inves-
tigation is threefold. First, we formulate a generalised 2.5D linearised MHD
system in the presence of viscous, pressure, collisionless and axial magnetic
effects. Second, we find, in accordance with previous studies, that viscous
effects, while reducing the rate of reconnection, boost the rate of
total energy release. Moreover, viscous dissipation, as opposed to resistive
dissipation, is unlikely to be impeded by pressure forces. Third, we compare
two different equilibrium axial magnetic field profiles. One profile emulates a
quasi-separatrix layer (QSL) and the other profile emulates a 3D null point.
In 2.5D these profiles actually correspond to a hyperbolic field threaded by
an axial field and a null line respectively. We show evidence that fast
reconnection is only attainable in the presence of a null.

Finally, in Chapter 7 we present our conclusions and possibilities for further

research.



Chapter 2

MHD Equations and Early

Models of Reconnection

This thesis seeks to cast light on three central topics, namely: current sheet
formation, steady reconnection and unsteady reconnection. The next four
chapters will focus on a number of problems related to these three topics. In
this chapter, we will introduce the necessary mathematical framework to deal
with coronal plasmas and we will provide an illustrative example of each of our
three topics: the Imshennik and Syrovatskii (1967) solution for current sheet
formation, Forbes (1982)’s unsteady reconnection approach and the Sweet-
Parker (1957) model for steady reconnection.

First, we introduce the magnetohydrodynamic (MHD) equations, and show
how the flux frozen-in theorem follows naturally from the ideal MHD approx-
imation. The phenomenon of flux being tied to the plasma in ideal MHD
provides the mechanism for astronomically large amounts of magnetic energy
to build up and be stored in the field line topology, but also requires the en-
ergy release rate to be dependent on the extremely small non-ideal parameter
n ~ 10715, Accordingly, we move on to introduce the traditional Sweet-Parker
model of steady reconnection, which has a flux transfer rate ~ /7.

Due to the low resistivity, reconnection requires regions of extremely large

1

currents ~ 1~ called current sheets. This motivates the need for a model to



explain how current sheets can naturally form in the solar corona. We explore
the X-point collapse model proposed by Dungey (1953) and later described
mathematically by Imshennik and Syrovatskii (1967). The X-point collapse
model utilises naturally forming finite-time singularities in the current func-
tion, which can be arrested by resistive or gas pressure effects (Forbes, 1982)

followed by unsteady reconnection (McClymont and Craig, 1996).

2.1 The MHD Equations

The MHD equations describe the evolution of the plasma velocity v and the

magnetic field B. In cgs units they consist of the conservation of mass equation
Op+ V- (pv) =0, (2.1)
the momentum equation
1 2
plowv+ (v-V)v]=-Vp+ -J x B+ prV-v, (2.2)
c

Ohm’s law (Rossi and Olbert, 1970)

1 1
E+-vxB=nJ+—(J xB-Vp,)
c nec
+ ;’;2 BT+ (v- V)T +(J- V)V, (2.3)
Gauss’ law
V-B =0, (2.4)
Faraday’s law
1
VxE= —EatB, (25)
and Ampere’s law
4
V xB= %J. (2.6)

For both the sake of elegance and for the more practical reason of needing di-
mensionless parameters, such as the Reynold’s and Magnetic Reynold’s num-
bers, to use for asymptotic analysis and limiting cases we non-dimensionalise

the MHD equations.
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Our primary variables and parameters and their dimensions are summarised

in the following table (for values see e.g. Priest and Forbes, 2000; Craig and

Watson, 2005; Craig et al., 2005)

Symbol Meaning Dimensions | Typical Coronal Value
\' plasma velocity | va = By/\/4mpo 10%° cm st
B magnetic field By 10°G
p plasma density 00 1074 gem™3
l length L 10%° cm
t time ta=L/va 10 s
n resistivity dmLvg/c? 10712 to 107145
v plasma viscosity Luy 10745
and our secondary variables are
Symbol Meaning Dimensions

J current density | ¢By/(4wL)

E electric field vaBy/c

D gas pressure pPovy

De electron pressure povy

The resistivity 1 and viscosity v are assumed to be constant. The pressures

p and p,. are assumed to be scalar (e.g., Wang et al., 2000), v4 and t4 are the

Alfvén velocity and time respectively, and we have assumed a temperature of

the order 10°K.

The dimensionless equat

ions are

E+vxB=nJ+d;(JxB-Vp.)

+ 20T+ (v- V)T +(T- V)V,

plov+ (v -V)v]=-Vp+J x B+vV3,

Op+V-(pv) =0,

V-B=0,
J =V xB,
VXE:—atB.

(2.10)
(2.11)

(2.12)
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Ct+dt) |

Figure 2.1: Flux frozen-in theorem: C/(t) is a curve with in the surface S(t).

The infinitesimal line segment dl is an element of C'

The dimensionless parameters that quantify the role of collisionless effects

are displayed in the table below.

Symbol Meaning Typical Coronal Value

d; ion skin depth ¢/(Lwy;) ~ 10765

d. electron skin depth ¢/(Lwye) ~ 1078

Wi ion plasma frequency (4mne?/m;)'/?
Whe electron plasma frequency (4mne?/m,)/?

c speed of light 3 x 101° cm s7!

e electron charge 1.602 x 107 C

m; ion mass 1.673 x 107 g
Me electron mass 9.109 x 10~ g

n number density 10° cm ™3
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2.2 Flux Frozen-In Theorem

In order to study how magnetic reconnection is able to liberate such vast
quantities of energy, we first need to understand how magnetic energy is able
to build up in the solar corona. Consider an ideal plasma with n = 0. Then

Ohm’s law (2.7) reduces to
E+vxB=0, (2.13)

which we take the curl of to derive the ideal induction equation using (2.12)

0B

B = =V x (vxB). (2.14)

We define the magnetic flux as

B(t) = / B.dS, (2.15)

S

through a surface S(t). Consider a curve C(t) within S (Fig. 2.1). If dl is an

element of C', then it carves out an area
v x dl (2.16)

per unit time. Hence differentiating (2.15) with respect to time, we obtain the

rate of change of flux

/— ds + / (v xdl). (2.17)

Rewriting the final term as

/B~(v><dl):—/(v><B)-dl (2.18)

C C

and applying Stokes’ theorem yields

%:/[%—?—VX(VXB)}@S, (2.19)

which vanishes by (2.14).
This result gives rise to the notion of flux tubes- surfaces that contain

magnetic field such that the cylindrical sides of the tube are everywhere parallel
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Figure 2.2: A flux tube: A surface that contains magnetic field such that the
cylindrical sides of the tube are parallel to the magnetic field lines (red) along

its whole length.

to the magnetic field lines (see Fig. 2.2). Hence, the total magnetic flux of the
tube must remain constant. Thus ideal MHD restricts field lines from touching
and forbids any change in topology of field lines, though tubes are allowed to
be squeezed and stretched. This is the flux frozen-in theorem.

The ideal MHD approximation holds as the term 7nJ is small, that is regions
of low current. Hence, current sheets represent excellent sites for magnetic
reconnection as they comprise long, thin regions of high current. Outside

current sheets, we still apply the flux frozen-in theorem.

2.3 Steady Reconnection: The Sweet-Parker
model

When two oppositely directed magnetic field lines are carried towards each

other they are, under certain circumstances able to break off and rearrange
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NS

LN

Figure 2.3: A magnetic X-point that collapses to form a current sheet (grey),

which can then reconnect. At the centre of the X-point lies a magnetic null

point surrounded by hyperbolic, oppositely directed magnetic field lines (red).

into new field lines. This process, known as reconnection, was first proposed
by Sweet (1958) and Parker (1957) in order to account for the energy released
in solar flares. The Sweet-Parker model, based largely on dimensional argu-
ments, predicted a release of energy that is large enough to explain solar flares,
however it could not account for the rapid release of energy in solar flares.

Magnetic reconnection takes place at current sheets, which comprise long
thin regions of extremely high current density. In 2D these often arise from
the collapse of magnetic X-points (see Fig. 2.3). At the centre of the X-
point lies a magnetic null point surrounded by hyperbolic magnetic field lines.
A magnetic null point is defined to be a point where the magnetic field
vanishes. A null point is required in order for reconnection to occur in two
dimensions. In three dimensions, however, a null point is no longer necessary
for reconnection.

This breaking and rearranging of magnetic field lines is not possible in ideal
MHD. Hence we need to consider non-ideal terms in Ohm’s law. The most
obvious choice is to include the resistive term nJ. Later we will also consider
terms that are even smaller (in the solar corona): the Hall and electron inertia
terms. By including the resistive term we limit ourselves to the region in

which it becomes significant. That is, in a region with a length scale of order
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/1. Given the tiny size of 1 this means that the current J must be locally
for very high reconnection to work. As the field lines are fairly straight, that
means reconnection takes place in a small rectangular region, often called the
diffusion region due to the resistive term’s ability to diffuse magnetic energy.

For the rest of this thesis we define purely resistive to refer to plasma
that is in every way, other than the resistive diffusion term nJ in Ohm’s law,
ideal.

In purely resistive, steady, incompressible 2D MHD we have:
E+vxB=n], (2.20)

(v-V)v=Vp+JIxB. (2.21)

In addition the incompressibility assumption means that

V-v=0, (2.22)
and Gauss’s law tells us

V-B=0. (2.23)

We have non dimensionalised equations (2.20)-(2.23) in terms of the Alfvén
velocity v4, a typical magnetic field value By ~ 100G and a typical length scale
L. We consider a diffusion region along the x-axis with length L, which is taken
to be 1 in our units, and width [ (displayed in Fig. 2.4). The inflow magnetic
field component B, is also taken to be 1 in units of By. Our remaining variables
are the inflow velocity v,, outflow velocity v,, and outflow magnetic field B,.
Differentiating with respect to z is of the order 1/L = 1 and differentiating

with respect to y is taken as ~ 1/I. From equation (2.22)
— ~—. (2.24)
Similarly, for equation (2.23)

~

B
Ty_ (2.25)

| =
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Figure 2.4: Schematic representation of the Sweet-Parker model. Magnetic

field reconnects at the current sheet (red).

At the origin we can take B = 0 and taking E = Fz and J = Jz
E ~nJ (2.26)

Outside the diffusion region we can neglect nJ. Hence F is proportional to the

inflow speed and magnetic field:

E ~u, (2.27)
Following Ampere’s law

J =V xB, (2.28)

we can take the current at the origin to be

B, 1
I~ (2.29)

Substituting equation (2.29) into (2.26) and equating to equation (2.27), we

have

~|3

(2.30)
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From equation (2.24), [ ~ v,/v,. Hence
vg ~ Ny (2.31)
Taking the x-component of the momentum equation and using equation (2.24)

(v -V)v %~ (2.32)

x?

and using equation (2.29)

B
(I xB)- %~ =, (2.33)

Combining equations (2.25), (2.32) and (2.33) yields

V2~ % ~ 1. (2.34)

Unsurprisingly, the outflow velocity then is taken to be of the order of its
typical reference value - the Alfvén velocity - so that v, = v4 = 1. Combining

equations (2.24) and (2.30) we find

vy~ L~ /i (2.35)

The dimensionless inflow velocity v, is the reconnection rate, often called the
inflow Alfvén Mach number M;. In the solar corona, fields reconnect at be-
tween 1073 and 107° of the Alvén speed (Priest and Forbes, 1986). However,
0-145

typical values of the solar corona give a dimensionless resistivity of n ~ 1

(see e.g. Craig and Watson, 2005).

2.4 The Petschek model

The first and most popular solution to this problem for a long period of time
was the Petschek (1964) model. Petschek considered a diffusion region with
a length A and width [ much smaller than the global length scale L. Fur-
thermore, he considered a wide X-point angle with slow mode shocks along
the separatrices. Consequently, the inflow speed vi,q0w into the region (for an

incompressible plasma) is of the order

[

Vinflow ™~ Voutflow Xu (236)
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Figure 2.5: Schematic representation of the Petschek model. Magnetic field
reconnects at the current sheet (red). The blue lines represent slow mode

shocks.

where the outflow speed voutaow has magnitude vq ~ 1. Thus the inflow speed
depends on the aspect ratio I/ of the diffusion region. If [ ~ X\ we have rapid
reconnection.

Consequently, for two decades, the reconnection problem was thought to
have been solved. However, while physically valid, numerical simulations of
driven reconnection were unable to produce a Petschek configuration for small
1. On the other hand, a Petschek-like configuration was found in simulations
with an anomalous (i.e. locally enhanced) resistivity (e.g Heyn and Semenov,
1996). For a full discussion, we refer the reader to the monographs by Priest

and Forbes (2000) or Biskamp (2000).

2.5 Current Sheet Formation in Compressible

MHD

As proposed by Dungey (1953), a small perturbation of a current-free X-point

can lead to an explosive growth of current. In certain cases, the current can
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become singular in a finite-time, which we call current sheet formation. Of
course, an infinite amount of current density cannot actually exist. From a
mathematical perspective, near the singularity our model must break down and
no longer be a suitable approximation for a reconnecting plasma. Physically,
this means that effects such as pressure and resistive effects are able to limit
the growth of the current and quench the singularity.

Taking into account Gauss’ law:

V-B =0, (2.37)
we can set
B =V xz. (2.38)

in 2.5D. Thus the compressible MHD equations can be written as:

@—l—v-Vp: —pV - v, (2.39)

ot

%—f +v - Vip =V, (2.40)
ov 9

Plar T (v-V)v | =-=Vp—VV. (2.41)

We adopt the polytropic form for gas pressure

p=pp", (2.42)

where 3 and r are constants. Imshennik and Syrovatskii (1967) found the

following self-similar solution

v =a()e® - 50 + 21 [ (a - 5) (2.43)
p=p(t), (2.44)
v=(y(t)z,0(t)y). (2.45)

This leads to the set of ODEs:

&+ 2ay =0, (2.46)

B+285 =0, (2.47)
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p(i+7%) =4a (B -a), (2.48)
P (5 + 52> — 48 (6 - q), (2.49)
p+p(y+0)=0. (2.50)

We assume here that «(t) and S(t) are always positive in order to preserve the

geometry of our X-point. Making the transformation

1
a=— (2.51)

1
f= (2.52)

yields
a
== 2.

=2 (2.53)

b
0=~ 2.54
b’ (2.54)

4
= = 2.55

i=—b (% - 612) | (2.56)
b=a (% — b—i) . (2.57)

a(0) = a(0) =1, (2.58)
B(0) =b(0) =1, (2.59)
7(0) =70, (2.60)
6(0) = do- (2.61)

Here we let vy and &g be non-zero in order to avoid trivial static plasma
solutions. Furthermore, due to the symmetry of the X-point, that is by assert-
ing that the x coordinate is not inherently preferable to the y coordinate, we

find that the replacement
a— —pf, 8= —a, v =6, d— 7, (2.62)

corresponds to swapping the x and y axis. Hence, we only need to consider

the case 79 > dg. The case 7y = Jg is a special class of current-free solutions
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that we do not consider here (see Imshennik and Syrovatskii, 1967). Thus we
assert that a > b and @ > b for early times. Equations (2.56) and (2.57) tell
us that @ > 0 and b < 0 for early time. Hence, a > b for all time and since
b < 0, we will reach a singular point b = 0 at some finite time ¢,. Near the

singularity, equations (2.56) and (2.57) can be approximated by
1
a= — 2.63
a b ) ( )

b= — (2.64)

Near the singularity we approximate the solution as

—— (2.65)
and solve for the constants ¢ and p. This yields the asymptotic solutions

- ga (t) (£ — 1) (2.66)

a = a(ty). (2.67)

An interesting special case, that we explore in Chapter 4, is the incompressible
case 79 = —0p. As discussed in Chapter 4, the incompressible case does not
lead to a finite time singularity (Chapman and Kendall, 1963; Uberoi, 1963;
Sulem et al., 1985).

2.6 Unsteady Reconnection in One Dimension

Forbes (1982) uses a one-dimensional magnetic configuration to describe an
evolving current sheet. While the one-dimensional model is a severe assump-
tion, it allows for analytical solutions which describe non-linear behaviour. In
Chapters 5 and 6 we will consider analytical solutions for 2D and 2.5D, that
is 3D models with no dependence on the z co-ordinate, but our drawback will
be that we can only describe linear behaviour. By employing numerical sim-
ulations, McClymont and Craig (1996) were able to describe non-linear 2.5D
reconnection and show the limiting cases where the Forbes (1982) model is

necessary and where a linear model is sufficient.
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In one dimension the purely resistive MHD equations with a magnetic field

B = B(z,t)y and velocity field v = v(z,t) X reduce to

B+ (vB) =nB" (2.68)
plo+wv]=—p — BB, (2.69)
p+(pv) =0, (2.70)

where the overdot refers to differentiation with respect to time and a dash refers
to differentiation with respect to . As with the Imshennik and Syrovatskii

(1967) model we adopt the polytropic gas pressure (2.42) and let

B =a(t)x, (2.71)
v =q(t)x, (2.72)
p =p(t), (2.73)

which reduces equations (2.68)-(2.70) to

&+ 2aq =0, (2.74)
p(i+q°) =—a, (2.75)
p + pg =0. (2.76)

Substituting ¢ = —p/p into (2.74) and applying the initial conditions (Forbes
and Speiser, 1979)

a(0)=1, p0)=1, q¢(0)=0, (2.77)

a=p (2.78)
Substituting (2.78) into (2.75) produces the equation

Gg+q>=—p° (2.79)
which we solve by letting

q(t) = f(t)p(?), (2.80)
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where f = —p/p* by (2.76). Thus equation (2.79) simplifies to

f=—p (2.81)
Hence, substituting p? = —p/ f:

ff =0 (2.82)
and integrating with respect to time yields

2o po1, (2.83)

after solving for the integration constant since f(0) = 0. Observing that (2.83)
has two solutions, we take the negative root (since p > 0 in (2.80) ) to ensure
that at x = +1, the plasma is flowing towards the origin (i.e. ensuring that

g < 0in (2.72)) . Hence putting
g=—V2(p— 1", (2.84)
into (2.76) yields

4 V2

— =2, 2.85

P (p—1)"? 259
which integrates to (Forbes and Speiser, 1979)

-1 1/2
DT (o= 1] = vat (2.86)
P

We calculate the singularity time t; by letting p — oo. The first term ap-
proaches zero and the second term on the left hand side approaches 7/2 as the

density approaches infinity. Hence

™

ty= —7=.
2v/2

To calculate the length scale we impose some boundary at x = +1. Since far

(2.87)

from the origin the plasma is approximately ideal, we say that information
from the boundary travels in the form of waves with speed v4 = B/,/p. The

speed of such a wave is given by (Priest and Forbes, 2000)

dx

5 U A (2.88)
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Substituting our values for B and u into (2.88) yields
i=—Lu— P>z, (2.89)
p

Covering up the last term on the right-hand side motivates the substitution

z(t) = %, (2.90)
which reduces (2.89) to

g=—r"""qg. (2.91)
Finally letting p = —p/q, we end up with the relation

9___ P (2.92)

9 V2plp—1)

which upon integration and substitution into (2.90), we obtain the length scale

(Forbes, 1982)

v=p (Vo+Vo—1) v (2.93)

2.6.1 After the Singularity

In order to arrest the singularity, we assume that the current build up is
stalled by the resistivity or gas pressure (Forbes, 1982). For resistive diffusion,

we balance the terms

(vB) ~nB", (2.94)
in equation (2.68), which requires dimensionally that

v~ (2.95)

Recalling that near the singularity p > 1, the length scale (2.93) and velocity

function (2.84) become

z e~ p BTy~ g2 (2.96)

Substituting (2.96) into (2.95) and (2.78) we obtain the scalings required to

halt the collapse of a current sheet (Forbes, 1982; McClymont and Craig, 1996)

pron PO BT T OB (2.97)
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These scalings are especially significant, as pointed out by Priest and Forbes

(2000), since they imply a maximum reconnection rate of
E ~nJ ~n %0, (2.98)

which would be very fast compared to the Sweet-Parker model. We often use
the maximum reconnection rate in unsteady models as a comparison with the
steady Sweet-Parker rate since if the maximum reconnection rate is slow, we
can immediately dismiss the model. In this case, since our maximum recon-
nection rate is fast, we can dig deeper and search for the average reconnection

rate given by

1 T
Eove = —/ nJ dt (2.99)
T Jo

over a collapse time 7. Letting J = p? from (2.78), we obtain

Pr 2
Eave = Q/ p_ d,O, (2100)
TJ1 P

which, after recalling that p/p® = — f(p), integrates to
_n 1/2
Eue = V2 (p. — 1)'/?. (2.101)
T

Taking 7 to be the singularity time ¢, and employing equations (2.87) and
(2.97) yields

Eaye ~ 1™, (2.102)

which we deem slow since it scales as a positive power of 7.
Alternatively, if gas pressure effects arrest the singularity then we balance

the terms

BB ~ B(p") (2.103)

in equation (2.69), where we have used the polytropic gas pressure (2.42). For
a sufficiently high temperature, we assume a monatomic gas with r = 5/3.
Substituting the magnetic field scaling (2.78) and the length scale (2.93), with

p > 1, into (2.103), we find (Forbes, 1982)

p B0 gLSTY g F02TL p | gol8s0. (2.104)
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Finally, we use the scaling J ~ 575%9 as a condition on when pressure effects
will overwhelm resistive effects. A quick comparison to the resistive scaling

1.045

J~n" yields

B <™, (2.105)

as a limitation on when we can safely ignore pressure. Considering that n < 1,
we require a very small 3 ~ T/B? in order for gas pressure effects to be
negligible, or in other words a very high temperature or a very small magnetic

pressure.

2.7 Summary

We have first introduced then, for the sake of easier mathematical manipu-
lation, non-dimensionalised Magnetohydrodynamic equations. In ideal MHD,
the rate of change of flux through a surface is zero, leading to the idea that flux
is frozen in to the plasma. However, when resistive effects become significant,
the flux frozen-in condition is broken and topology may change. Resistive ef-
fects only become large enough in the presence of very high current over a very
small length scale - in other words at a current sheet.

The Sweet-Parker mechanism requires a current sheet. At the current
sheet, resistive effects are significant and field lines are allowed to break and
reconnect. Far from the current sheet ideal MHD applies. Hence, the Sweet-
Parker model naturally lends itself well to asymptotic analysis. Such an anal-
ysis predicts the release of a large amount of magnetic energy at the rate of
/7. This is a rate many orders of magnitude smaller than observations. A
“fast” magnetic reconnection rate we define to have a logarithmic dependence
on 7 or be dependent on 7 to a zero or negative power. This slow reconnection
rate is the central problem that motivates the original research in this thesis.

Furthermore, we have introduced a model for current sheet formation. In
a compressible, purely resistive framework Imshennik and Syrovatskii (1967)

found a self-similar solution that leads to a finite time singularity in the current.
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Notably, the same singularity does not occur in a finite time in incompressible
MHD (Chapman and Kendall, 1963). Clearly, a singular current is not phys-
ically possible. In this case, the singularity is ultimately arrested by pressure

effects and is described (in one dimension) by the Forbes (1982) model.



Chapter 3

Visco-Resistive Length Scale in
Flux Pile-Up and Series
Solutions for Steady Magnetic

Reconnection

3.1 Introduction

Flux pile-up is a regime in which oppositely directed magnetic field lines are
swept towards each other and as they approach the origin they are pushed
together and the flux becomes high at the edge of the diffusion region (Priest
and Forbes, 1986). A particular case of flux pile-up is magnetic annihilation,
in which straight magnetic field lines are directed at each other in a stagnation
point plasma flow. The magnetic field is said to be annihilated at the origin.
This differs from magnetic reconnection, in which there is a topological rear-
rangement of field lines at the origin. However, by introducing a shear flow,
Craig and Henton (1995) were able to construct an annihilation model that can

be turned into a reconnection model by allowing for topological rearrangement.
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3.2 Governing Equations

We consider 2D steady, incompressible (p = 1) MHD and ignore the Hall
effect and electron inertia (d; = d. = 0). The dimensionless MHD system

(2.7)-(2.12) reduces to

E+vxB=nlJ (3.1)
(v-V)v=-Vp+JxB+vVi, (3.2)
Vov=0, (3.3)
V.B-0, (3.4)
J=VxB, (3.5)
VxE=0. (3.6)

We use the flux function ¢ (z,y) and stream function ¢(x,y) to satisfy

equations (3.3) and (3.4):

B =V x ¢z = (9,1, 9,1, 0), (3.7)

v =V x ¢z = (0,0, —0u,0), (3.8)
Assuming E only has a z component, the solution to (3.6) is
E= Ez, (3.9)

where F is a constant. After taking the curl of (3.1) and (3.2), The MHD

equations simplify as follows:

—E + [1h, 6] =nV*, (3.10)

[V20,0] = vV* (V29) =[V*, 9], (3.11)

where Poisson bracket notation is defined as

Wa ¢] = (8x¢)8y¢ - (ay¢)0m¢-
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3.3 Flux Pile-Up Models

The flux pile-up regime is of interest to us because it provides one of the
few avenues for finding exact analytical solutions to the MHD equations from
which we can describe a current sheet. The simplest non-trivial flux pile-up
solution (Sonnerup and Priest, 1975) comes from considering straight vertical

magnetic field lines and sending them towards the origin, that is to say we let
B=B(2)y. (3.12)
and assume a hyperbolic plasma flow

¢ = —xy (3.13)

and neglecting viscosity (v = 0). Substituting (3.13) into (3.10) yields

0B

E—xzB=ng",
xr

(3.14)

which has the solution

B= j—f_n daw (V%) , (3.15)

in terms of the Dawson function

daw(u) = e_“2/ e dp. (3.16)
0

Later models generalised the flux pile-up model to include viscosity and
vorticity. Gratton et al. (1988, 1990) considered a viscous stagnation point
flow, however their solution did not represent any realistic flow for magnetic
annihilation. The problem is that their velocity field exhibited cusplike be-
haviour which implied a viscous drag force directed towards the origin (Son-
nerup and Phan, 1990). Besser et al. (1990) modified Gratton et al.’s solution
to represent a perturbed Sonnerup and Priest (1975) flow, rather than a cusp-
like flow. Hence, Besser et al. (1990) assume that the magnetic field takes the
form (3.12). However for a more general plasma flow, equation (3.14) can be
generalised to

P00, 08

== 3.17
AT (3.17)
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For simplicity, we follow Besser et al. (1990) and consider

o6

- 5 f(z), (3.18)

Vg

so that equation (3.17) has the solution

B= %exp (Kff)) /lz exp (—@) ), (3.19)

where

K(z) = ’ dé. :
@ = [ reu (3.20)
Integrating equation (3.18) yields

6= yf(@) + 9(a). (3.21)

Using a steady viscous flow requires that the momentum equation takes the

form

(v-V)v==Vp-V(3B%) +vV?v. (3.22)
Taking the curl and noting that V x v = —0,,¢ 2 gives

y [+ 11— 15+ g+ g 9] = 0 (3.23)
Equating each bracket to zero and integrating yields

vf" + ff" — f* = const, (3.24)

vg" + fg" — f'g’ = const. (3.25)

For our purposes here we are not interested in finding a general solution but
rather a particular solution. Hence we assume integration constants to be zero.

Following Besser et al. (1990) we let
f(x) =—x (3.26)

as in the Sonnerup-Priest model. Substituting into equation (3.25) we are left

with

vg" —xg" + ¢ =0. (3.27)
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Integration yields
vg" —xg + 29 = 0. (3.28)
which we can write as a Sturm-Liouville equation
— (e‘ﬁ g’(x)) + —e 2 g(x) = 0. (3.29)
v
Eventually we end up with the solution
x? x?
g(z) =c; [(V — z°) /exp <2_y> dz + v xexp <2—V>}
+ eo(v — 22). (3.30)

Finally, we substitute equations (3.26) and (3.30) into (3.21) to describe ¢(z, y).
Hence, we have generalised the exact, irrotational Sonnerup and Priest (1975)

solution to add a rotational component, provided a finite ¢, in equation (3.30).

3.4 Craig-Henton solution

The Craig-Henton (1995) solution is not strictly a magnetic annihilation so-
lution since it throws away the condition (3.12) and hence the magnetic field
lines are not straight. However, it shares enough similarities with magnetic
annihilation that it should be considered with them. It is however an example

of a flux pile-up solution. If we ignore (3.12) then the MHD equations become:
V20, 0] = [V, 9], (3.31)

E+ [, ¢] = V. (3.32)
Their approach was to first solve equation (3.31) in such a way that the ad-

vection term [1), ¢] does not disappear in equation (3.32). Which means we

cannot let 1) = f (¢). They used a harmonic function H(z,y), where
V2H(z,y) = 0. (3.33)
Let

¢ =aH(z,y) + u(z), (3.34)
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¥ = BH(z, ) + b(z). (3.35)
Substituting (3.34) and (3.35) into (3.31) yields
(au” — BY") 8,H = 0. (3.36)
We solve (3.36) by simply letting
B
u(z) = ab(:c), (3.37)

and ignoring any integration constants. Equation (3.32) then becomes

Oé2 - ﬁZ
E+ < ) u'(x)0y,H = nu" (). (3.38)
a
From here, we can infer that J,H is a function of x only. Hence, by equation
(3.33), H(z,y) must take the form H = xy. Solving for u in equation (3.38)

yields the solution

u(z) = %daw (ux), (3.39)
where
_ (=0
p? = oy (3.40)

Much like the Besser et al. (1990) solution, the Craig-Henton solution takes a
stagnation point flow and distorts it by adding a shear flow. The difference is

that the Craig-Henton solution has non-straight magnetic field lines.

3.5 Three Dimensional Reconnective Annihi-
lation

While, in this thesis, we restrict ourselves to a 2.5D regime, one of the reasons
the Craig-Henton model is important is that it scales up easily into three
dimensions. Craig and Fabling (1996) split the magnetic field and plasma
velocity functions into a background field P(x,y, z) and a shear field Q(z, v, 2)

where

B=)\P+Q (3.41)
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and
v=P+ Q. (3.42)

We take the simplest possible (non-trivial) 3D background field that satisfies

V-P=0:
P=(—xkry, (1 —kK)z). (3.43)

Taking the field line equations (Fabling, 1997)

Lo _dy o dz (3.44)
r  rky (1—k)z
produces the characteristic equations
¥ =—ya", (3.45)
x =zx' 7", (3.46)
£ =yz1=m/% (3.47)

where 1, x and £ are constant along field lines. Letting x = 0 reduces us to

the 2D xz plane and letting x = 1 reduces us to the xy plane. Thus we take
0< k<. (3.48)

Much as in the 2D case we add a shearing field that satisfies V- Q = 0:

Q=X(y,2)x+Y(x,2)y+ Z(z,y)z. (3.49)
Letting
Q=Y(2)y + Z(x)z (3.50)

corresponds to what is known as a fan current geometry and
Q = X(y, )% (3.51)

corresponds to what is known as a spine current geometry (see Lau and Finn,
1990, for a definition). Fully three dimensional magnetic reconnection is be-
yond the scope of this thesis (see e.g. Pontin, 2011, for a review) but it is worth

noting here how easily the Craig-Henton model translates into 3D.
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3.6 Visco-Resistive Length Scale in Magnetic

Flux Pile-Up

Different models of visco-resistive (VR) reconnection have produced different
length scales for a VR current sheet. Significantly, a VR scale does not appear
in a certain class of reconnection solutions called flux pile-up solutions (Besser
et al., 1990; Phan and Sonnerup, 1990; Craig and Litvinenko, 2012). Thus,
any VR length scale is not necessarily a universal scaling for reconnection,
a surprising result considering the simple VR dimensional argument used by
Park et al. (1984) should be widely applicable. Furthermore, the VR scale
does feature in many classes of solutions, such as linear reconnection (Craig
et al., 2005; Titov and Priest, 1997; Hassam and Lambert, 1996), reconnective
annihilation solutions (Fabling and Craig, 1996; Litvinenko, 2006; Craig and
Litvinenko, 2012), more general scaling arguments (Simakov et al., 2010) and
plasmoid instability models (e.g. Comisso and Bhattacharjee, 2016, and refer-
ences therein). This discrepancy in length scales for seemingly similar models
motivates our investigation to find a more detailed description of a VR current

sheet.

3.7 Dimensional Argument

Before we search for the visco-resistive length scale in flux pile-up models,
we first review the Park et al. (1984) scaling argument and the flux pile-up
solutions that incorporate viscosity. The first step to determine some unknown
scaling is to use a rough estimation. Here, we review a dimensional argument
(Park et al., 1984) to demonstrate where the VR length scale originates. We
use our own notation and units in order to provide context for arguments we

present later in the paper. From equation (3.1) we estimate

—E ~ [, ¢] ~ nd;¢ (3.52)
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for the outflow flux ¢y and inflow stream function magnitude ¢,. We normalise
units and choose 0, ~ 1/L ~ 1. The outflow velocity and magnetic field are

also order unity. Approximating 0, ~ 1/l gives

Yodo  mtbo

= , 3.53
l 2 (3.53)
Hence
n = lgo. (3.54)
Similarly, for equation (3.2) we obtain
ol o U§
5V =TI (3.55)
where the negative sign in the first term comes from 9%v, < 0 for v, = —9,¢ >

0 (Biskamp, 2000, 1993) since we assume that the velocity field localises around
the origin so if v, is positive at the origin we can also say that it is concave
down and hence d2v, is negative. The same argument applies for ¢y term on

the right hand side. Rearranging yields

v\ 2
Po = o (1 + @) : (3.56)

Substituting equation (3.54) into (3.56) gives
o\ 2
Po = o (1 + —) : (3.57)
U]
Normalising the magnetic field so that B, = 0,1 ~ 1 requires that
o ~ 1, (3.58)
and hence the visco-resistive scale
D\ VA
[~ \/n (1 + —) . (3.59)
n
For the limiting case v > 1, we obtain the scaling
L~ (), (3.60)

which is the length scale that appears in previous solutions (e.g. Titov and

Priest, 1997; Craig et al., 2005).
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3.8 Presence of the VR Scale in Flux Pile-Up

Models

A peculiarity of the flux pile-up solutions in Sections 3.3 and 3.4 is the absence
of a VR length scale. In Besser et al.’s solution we can see the emergence of
a length scale /7 in equation (3.19) but a length scale /v in equation (3.30).
Which suggests that unlike traditional reconnection models (Park et al., 1984),
we have separate viscous and resistive current layers. This also appears to be
a feature of the reconnective Craig-Henton solution (Craig and Henton, 1995;
Fabling and Craig, 1996; Craig and Litvinenko, 2012).

The reason for a lack of a VR length scale in Besser et al.’s solution is clear.
The magnetic field is solved in terms of the function f(x) = v,. Since the
function f(x) is chosen so that viscous terms will vanish, the magnetic field
is independent of viscosity. The viscosity does however feature in equation
(3.30) for g, which is solved independently of the magnetic field and hence the
resistivity. Thus B depends on n and v, = —y f'(z) — ¢'(z) depends on v.

However, in other more general solutions for magnetic annihilation (Son-
nerup and Phan, 1990; Jardine et al., 1992), the function f(z) has to be solved
from equation (3.24). We can make equation (3.24) dimensionless by making

the transformation
T
T = —. 3.61
=2 (3.61)
Equation (3.24) becomes

["(@) + f@) (@) - (@) = 0. (3.62)

While we have to resort to numerical methods to find any physically meaningful
solutions to (3.62) (see Jardine et al., 1992), we argue that if the velocity
function v, = f(x) has a viscous dependence then the magnetic field (3.19)
will also have a viscous dependence, hence a VR length scale will appear

naturally. More generally, as long as the third derivative of f(x) does not
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vanish we should expect a viscous scale in the velocity and a VR scale in the
magnetic field.

We expect that the same sort of dimensional argument should also apply
for the reconnective flux pile-up Craig-Henton solution. In order to force a VR
scale we adopt a more general solution described by Priest et al. (2000) and

Craig and Watson (2005):

¥ = 1bo(x) + 1 (2)y, (3.63)
¢ = do(x) + ¢1(2)y. (3.64)

Substituting into equations (3.10) and (3.11) yields, for the case 0, > 0,:

— 1y + 1 — mb) =0, (3.65)

v — ¢F + ¢l dr + ¢ — ¢y =constant, (3.66)

E — ¢1y + ¢pthr — mibg =0, (3.67)

vy — God1 + Godr + Piho — Yy =constant (3.68)

Assuming none of the above terms vanish we can put forward a simple dimen-
sional argument to find a length scale.

Letting x ~ [ and substituting into equation (3.65) yields

P11 - 77_%
[ 2’

(3.69)

and substituting into equation (3.66) yields

2 2
CE - 50

Rearranging we find
N\ /4
Y1~ 1~/ (1 + 5) , (3.71)
N\ L4
¢1~ /1 <1 + 5) : (3.72)

Continuing for ¢y and vy, we find

Yo ~ Y1, (3.73)
E ~¢o ~ ¢1. (3.74)
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Figure 3.1: Alignment of current sheet

Hence we recover the scalings described by Park et al. (1984).
We compare this scaling argument to the solution given by Craig and Litvi-

nenko (2012). They write the velocity and magnetic fields in the form

v =aP(x,y) +u(z)y, (3.75)

B = 8P(z,y) + b(2)y, (3.76)

where P(x,y) = V x (11y)z is a large scale background field and u(z) = —¢j,
and b(z) = —1|, are reconnection fields. In this case ¢; = ;. We argue that
if the Laplacian of the background field vanishes there will be no VR scale,
regardless of the form of the reconnection fields. Thus, the presence of a VR
scale is independent of any fields other than the background velocity field or
in other words the inflow velocity profile.

It is worth mentioning here that the system (3.63) and (3.64) naturally

closes even when accounting for the Hall effect (Craig and Watson, 2005).
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3.9 Description of a Purely Resistive Current
Sheet in Steady Magnetic Reconnection

Before we describe a visco-resistive current sheet, we should briefly review a
description of a purely resistive current sheet. Considering a long, thin current
sheet aligned on the y-axis (see Fig. 3.1) with width [, Biskamp (1986) used
a series expansion to describe the sheet near the origin. Approximating the
sheet as quasi-one-dimensional, Biskamp (1986) let 7 ~ 7> > 0. Hence,
we approximate V2 & §2. Equations (3.10) and (3.11), with viscosity v set to

zero, become

0320, 6] = (070, 9. (3.78)

Near the origin, we let the flux and stream functions can be represented by a

power series expansion of odd and even functions

(2, y) = tho (x) + P2 () Y 20+ by () y* /4L (3.79)

Pz, y) = ¢1 (2)y+ @3 (x)y* /31 + ..., (3.80)

and chose the zeroth order current profile

FE
Jo@) = —am@/)o = g

sech? (%) : (3.81)

which describes a Harris sheet. Note we use factorial denominators which
Biskamp (2000) did not use. Hence, for instance, our v is 1/(2!) the size of
Biskamp’s ¢5. Substituting the expansions (3.79)-(3.80) into (3.1)-(3.5) and

collecting the coefficients of like powers of y terms yields

— B+ 41 = nig, (3.82)
1 — P\ = vt — Yy, (3.83)

a1 + ods — 2020 = iy, (3.84)
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where the dash refers to differentiation with respect to x. From here Biskamp

(1986) calculated

i =—E0 1 (cosh () (3.85)
61 = —?tanh (%) , (3.86)
b= v 3) o ()] e
¢ = EUT4Z7 {Gntanh:g (%) — 7y tanh (%) + 377T$sech? (%)} L (3.89)

Note there was a factor of two error in Biskamp’s expression for 1)5. From here

Jamitzky and Scholer (1995) found the fourth order flux term

(0N ul {8 — 3_9528%}12 (E) — 4 tanh? (£> + 2tanh? <E>

CE 12 I I I

2 (1) - 22 gy (;)} | (3.89)

3.10 Visco-Resistive Length Scale in Steady
Magnetic Reconnection

Now we extend Biskamp (1986)’s description of a purely resistive current sheet
near the origin to include viscous effects. This could be useful in terms of
numerical simulations or laboratory experiments that incorporate viscosity.
The calculation has one degree of freedom that manifests in the choice of
a zeroth order current profile. Hence, we perform this calculation for three
different zeroth order current profiles as prescribed by Biskamp (2000) and
find that two contain a VR length scale while the other does not, despite the
three zeroth order current profiles being qualitatively similar and having the
same limit near the origin. Finally, we compare flux pile-up models with our
series expansion solution and discuss the physical implications of our results.

Following Biskamp (1986), we assume a long, thin current sheet with thick-
ness [ aligned along the y axis as pictured in Figure 3.1. This implies that,

near the y axis, 97 ~ 17 > ;. Hence, we approximate V* ~ 2. Equations
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(3.10) and (3.11) become

— Bt ) = o, (3.90)

020, 6] — vO7 (920) = (200, ). (3.91)

Finding an exact solution for a reconnecting current sheet, and hence an
exact VR length scale, that is valid everywhere is infeasible. However, if we
only consider a small length scale then we can use a series expansion tech-
nique which, to a sufficient order, is valid in the vicinity of the current sheet.
The series expansion method was first used to describe a 2D purely resistive
current sheet (Priest and Cowley, 1975). This was then refined to a quasi-
one dimensional series expansion by taking d, > d, and expanding only in
the y direction for a resistive current sheet (Biskamp, 1986; Sonnerup, 1988;
Jamitzky and Scholer, 1995) and a Hall current sheet (Litvinenko, 2009).

Near the origin, we again assume that the flux and stream functions can
be represented by the series expansion of odd and even functions (3.79)-(3.80),
and substitute into (3.1)-(3.5). Collecting the coefficients of like powers of y

terms yields

— E + 61 = n¥), (3.92)
o1 — B — vl = (Uf'a — ViU, (3.93)
Whbn + Vs — 2y = s, (3.94)
3(¢'ds — 050)) + (0 & — &) — vl =

(W5 0s — W0h) + 3 (454 — U0}, (3.95)
D11y + 6uhods + Vb5 — Athadly — A ths = i}, (3.96)

where again the dash refers to differentiation with respect to z.
We must assume a profile for ¢ = —B,(z,0), the magnetic field profile
near the y axis, in order to start the expansion. First we consider a zeroth

order flux function that replicates flux-pile up solutions of the form (3.15):

Yo = —Wdaw (%) : (3.97)
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This profile yields the higher order solutions

Yo =katbg (3.98)
Yy =katbo (3.99)
Ve =kgibo (3.100)

(3.101)

and

P3 =k3dr (3.102)
¢5 =ksP1 (3.103)
¢r =k7¢n (3.104)

(3.105)

for arbitrary constants k;. Setting all higher order terms to zero recovers the
Sonnerup-Priest solution and thus kills our VR scale.
Alternatively, we follow previous studies (Biskamp, 1986; Jamitzky and

Scholer, 1995; Litvinenko, 2009) and choose the zeroth order function

Yy = —ETZQ In (COSh (%)) . (3.106)

This particular current sheet profile, which describes a Harris sheet, is used
here since it is one of the only functions for which it is possible to perform
the expansion in terms of elementary functions. Furthermore, it is similar
to a Gaussian function which was postulated to be a more accurate profile
(Biskamp, 2000), and which we use in Section VIII. Substituting equation
(3.106) into equation (3.92) yields

b1 = —?tanh 7, (3.107)

where we let & = x/l. Integrating equation (3.93) twice gives

19 " 1
%o 0 Yy
which yields

2
Wy = % [(6v — n) tanh? & + ¢od tanh & + 20 + 1 — 3] . (3.109)
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Here, the arbitrary constant ¢, has been redefined after integration and we
have used the boundary condition ¥4(0) = 0 to specify another integration
constant since B,(0) = 0 at an X-point. Equation (3.94) shows that ¢35 — oo

as z — 0 unless
co=1m—2v. (3.110)

Substituting this result into (3.109), we find

772

V=g

[(n — 2v) & tanh & + (6v — 1) tanh® & + 4v] . (3.111)

Setting v = 0 recovers equation (3.87). To find ¢35 we use equation (3.94). The
result is

774

T B
— (7n — 38v) tanh @ + 3 (1 — 2v) Zsech’Z] . (3.113)

N [6 (n — 6v) tanh® Z (3.112)

Setting v = 0 recovers equation (3.88). Next, to find 14, we integrate equation
(3.95). The result is

775

T0f3
— 4 (n* — 62nv + 408v°) tanh® 7

Wy [8 (0 +nv —58v°) —3(n— ov)? #2sech’E
+2(n — 6v) (Tn — 66v) tanh® &
+ (23n% — 2127 + 460v°) & tanh &

—12(n — 2v) (n — 6v) Ftanh® 7 | . (3.114)

Note that setting v = 0 recovers equation (3.89). Substituting equations
(3.106), (3.111) and (3.114) into (3.79), and substituting (3.112) and (3.107)
into (3.80) yields the flux and stream functions up to fourth order. We use

these flux and stream functions to find the length scale of our current sheet.
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3.11 Description of a Visco-Resistive Current

Sheet

We want to find the length scale of a VR current sheet and quantify the role of
viscosity in magnetic reconnection. We obtain predictions for the reconnection
rate, the outflow speed and the thickness of the current sheet. We approximate
¥ (x,y) near the X-point by substituting the leading order terms of v, 1y and
1y into (3.79):

E , v, E 4 vy,

VR T Y Tt T s Y
5
Ui 2 2\ 4
+am0gs (17 + v —587°) (3.115)

To find the thickness [ from equation (3.92), we note that in our units we have
set the magnetic field to be measured in terms of some known inflow magnetic
field By. Hence we can set max |By(z,0)| = By = 1 and hence we obtain the

scale

= L 11
1= (3.116)

We substitute (3.116) into (3.115)

(RS

E (., 4E*, E* , 4E%w ,,
—— | z° = z
2n n 672 Uk

— (0" +nv —587) y4) : (3.117)
This flux function describes an X-point at the origin and is plotted in
Fig. 3.2. In the limit ¥ — 0 the magnetic separatrix angle approaches zero,
which describes an osculatory solution.
In order to find the length scale and reconnection rate, we need to calculate

the current function

1 1
J(x,y) = =iy () — a%’(x) y? — wiﬁ(@ vt (3.118)

We could insist that at the boundary of the current sheet the current drops

off to zero. Hence

J.(0,L) =0, (3.119)
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Figure 3.2: Magnetic field lines plotted for a visco-resistive current sheet:
equation (3.117) is plotted for n = 107, v = 10~%. F is calculated from
equation (3.127) with L set to 1 without loss of generality. Note: [ < 1 so the

actual aspect ratio is much greater than it appears in the figure.

for some known current sheet length L ~ 1. Substituting our values for ¢ (0),
5(0) and ¢ (0) we get
E (1 4EY 4E® (n* + 3nv — 74V2)L4>

J,(0,L) == 12
(0,L) n Uk 3n°

(3.120)
However, if v > n the current will always be positive and never drop off to
zero. Hence, the definition (3.119) would give us a complex length. Instead
we introduce the current density and compare our solution to a Syrovatskii
current sheet. It should be noted that Syrovatskii (1971)’s solution is for
ideal MHD, but nevertheless the definition that the current density becomes

negative beyond the boundary of the current sheet is particularly useful here.

The electric current per unit length is defined as

dr o
Q- /_Oo J.(z,y)dz, (3.121)
where
bdr
I= / — dy 3.122
iy (3.122)

dr E* E8
— =2 { (11n” — 116nv + 3161°) y* |, (3.123)

1——(n—2v)y*—
(n—2v)y S0
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Y

Figure 3.3: Electric current per unit length: equation (3.123) is plotted for
n=10"% v = 107*. E is calculated from equation (3.127) with L set to 1

without loss of generality.

which is plotted in Figure 3.3. We observe that the current density is relatively
even across the sheet and quickly drops off at the boundary of the current sheet

as expected. Imposing the boundary condition
I'L)=0 (3.124)

produces the result

4773
L? = 3.125
Et(n—2v+k) ( )

where

] (1/2)

1
K= {g (250° — 244nv + 6441°) (3.126)

Defining the current sheet length as L = 1 in our units, we rearrange equation

(3.125) to obtain the reconnection rate

E= i (W) - (3.127)

4n
We obtain the outflow speed v, by evaluating v, = —0,¢(z,y) at the point
(z,y) = (0, L) and using the leading order term of equation (3.107) along with
(3.116) (Litvinenko, 2009):

L
Vot = 7 E. (3.128)
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Substituting our values for L and F yields

4 1/2
Vout = (—77> . (3129)
n—2v+k

Finally, we can substitute equation (3.127) into (3.116) to find

(n—2y+m))1/4_

[= /1 ( i (3.130)

Equations (3.127), (3.129) and (3.130) are plotted in Figs. 3.4-3.6 respectively.
The curves in Figs. 3.4-3.6 closely resemble their asymptotic approximations
(3.188)-(3.193) for large v/n. We would expect, based on the (Park et al.,
1984) scalings, the Sweet-Parker normalised reconnection rate £/,/n and the
outflow velocity v,y to be unity when v = 0 and then monotonically decrease
as we increase the viscosity. Similarly, we would expect the Sweet-Parker
normalised length scale [/,/n to monotonically increase as we increase v/7.
However, for the scalings we have obtained, which are valid for all values of
v, we observe an initial increase in E/ /N and v,y and an initial decrease in
I/\/n as we increase the viscosity. Mathematically, the increasing I/,/n can
be explained by the fourth order correction term x (3.126) which reaches a

minimum at v/n = 244/(2 x 644) ~ 0.189.

3.12 Gaussian current profile

We have adopted two different zeroth order current profiles, equations (3.97)
and (3.106) (pictured in Fig. 3.7), and have attained two different length scales
for a VR current sheet. The fascinating aspect of Fig. 3.7 is that even though
there is a small difference in boundary conditions between the two current
profiles we obtain two completely different length scales. Additionally, we
remark that Fig. 3.7 depicts back currents at the boundary of the diffusion
region for the Dawson profile (3.97), however this is not the cause of the varying
length scales, in fact it is the boundary conditions of the inflow velocity that

determine the presence of a VR length scale.
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Figure 3.4: The reconnection rate F, normalised by the Sweet-Parker recon-

nection rate /7, plotted against v/n. The dashed line is the v — oo limit

given by equation (3.193). Without loss of generality L is set as 1. The dotted

line depicts the maximum at v &~ 0.1897.

0 0.5 1 1.5 2
v/n

Figure 3.5: The outflow velocity v,,; plotted against v/n. The dashed line

is the v — oo limit given by equation (3.192). The dotted line depicts the

maximum at v ~ 0.189n.
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Figure 3.6: The current sheet thickness [, normalised by the Sweet-Parker

current sheet thickness /7, plotted against v/n. The dashed line is the v — oo

limit given by equation (3.191). The dotted line depicts the maximum at

v~ 0.189.
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Figure 3.7: Zeroth order current profile as described by Biskamp (2000). The
solid line is the current profile that corresponds the flux function (3.97) and

the dashed line is the current profile associated with the flux function (3.106).
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This begs the need for a more general formulation for substituting zeroth
order current profiles and producing length scales. In particular, we want to

use a Gaussian function

E 2
J(2,0) = ¢gy(x) = —— exp [— (%) } , (3.131)
n
since it can be justified in terms of statistical thermodynamics (Biskamp, 2000).
However, calculating a fourth-order series expansion in terms of a Gaussian
function would prove intractable.
In place of the exact Gaussian profile (3.131), we approximate it by a 14th

order Taylor series

922 $4 5:6 5:14
L T . 3.132
Yo ( > 1260 T 131040) (3132)

Furthermore, we approximate the functions 1, or ¢, by employing the follow-

ing scheme (Cowley, 1975; Priest and Cowley, 1975):

Yo =thoo + oax® + Yoaz + .., (3.133)
$1 =Pz + P13z’ + . .. (3.134)
Wy =thgg + Poa” 4+ Pogxt 4., (3.135)
$3 =317 + Pgzr’ + ... (3.136)
by =thao + Pagt”® + Paaxt 4+ ... (3.137)

Substitution of equations (3.133)-(3.137) into equation (3.92) and collecting

the coefficients of like powers of x yields

E

Yoz = — BT (3.138)
Vo211 =614, (3.139)
Vo213 =15m 106 — 2904911, (3.140)
Yo20015 =281 Y03 — 3osP11 — 2¥0413, (3.141)
Vo217 =45mthor0 — dthos P11 — 3osP1s — 2¥0415, (3.142)

Y219 =66m1V012 — 5010011 — 4tPosP13 — 3Vo6P15 — 290aPr7, (3.143)
Y2111 =91NVo14 — 69012011 — HVYo10P13

— dhos P15 — 3oP17 — 2¢04n9. (3.144)
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Substituting into equation (3.93) produces

Yo2th22 =30V 15 + 6¢004¢a0, (3.145)
61021024 = — 10015011 + ¢%3 + 2100 @17 + 30006120 + 410atha2,  (3.146)

10¢02t026 =4¢13015 — 28011017 + 504V P19

561080 + 18¢ostPaz — 4thoathau, (3.147)
14tpoathas = — H4d11¢19 — 613z + 575 + 990v¢11,
+ 90v010%20 + 4090822 + 690s124 — 121Pp41a6. (3.148)

Similarly for (3.94):

—11th20 =1 V22, (3.149)
Vo2Pz1 =61 Vaa + 313120, (3.150)
Vo233 =151 Y26 — aa11 + 2922013 — 200431 + 520015, (3.151)
Vo235 =281 1h2s — 226011 + Yaars + 42

— 3thos P31 — 200aP33 + ThaoP17. (3.152)

And finally, substituting into (3.95) and (3.96) gives

604140 — Yo2taz = — 3 (P13¢31 — P33¢11) + 30035
+ 3 (6¢2atha0 — ¥3) , (3.153)

—220P31 — 2940011 =2 (3.154)

From here we compute the current along the y axis as

1 1
J:(0,y) = =2 (%2 + 5%23/2 + 51/1423/4 +.. ) : (3.155)
Solving equations (3.138)- (3.155) for the zeroth order profile (3.132) yields

E E'v , ESk
J.(0,y) = " (1 -+ 9—776y4) : (3.156)

where

L 15855n% — 60710y + 9306912
n 9450 ‘

(3.157)
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We cannot use the definition (3.124) here since our series does not converge
for large y. Instead, we use Jamitzky and Scholer (1995)’s definition that the
region of validity is our system size. That is to say the point where our series

no longer converges is defined as the current sheet length L. This is the point

where
1 1
EW42| = 5‘1/122‘- (3.158)
Adopting this definition, we find
3 3
pr=" (3.159)
k
and finally
Eo\ VA
E— o 3.160
Viles) (3.160)
and hence
B\ /4
= —_— . 3.161
Vi (5] (3.161)
The flux function near the origin is computed as
b B VB, B B
21 3 67)? 3n?
6
——— (1558551 — 5546 10566691°) y* 3.162
17010077 1 " V)Y ) (3.162)

as plotted in Fig. 3.8.

In the previous section we used two different zeroth order current profiles-
equations (3.97) and (3.106)- and found two different length scales- one with
a VR scale and the other not containing a VR scale. Our third zeroth order
current profile- the Gaussian profile (3.132)- does contain a VR scale. Hence,
we might suspect a VR scale to be present more generally. To this end, we
formulate a general method for finding whether or not a VR scale is present,

based on a zeroth order profile, in the next section.

3.13 Inflow velocity profile

The series expansion described in Section 3.9 has one degree of freedom which

we took to be the zeroth order current profile. This is primarily owing to



o4

—

0.57

x/l

Figure 3.8: Current sheet using the zeroth order current profile (3.131). We

have taken v = 1074, n = 1078,

reasons of convenience as assuming a velocity profile in equation (3.92) neces-
sitates solving a first order differential equation in order to find the leading
order flux function 1. However, in equations (3.138)-(3.144) neither the flux
nor the stream function is more convenient than the other.

Profiles (3.97) and (3.106) are difficult to unify into a more general function.
Alternatively, we could use the inflow velocity v,(z,0) = ¢; as our degree of
freedom. Consider the function

1 () = —% tanh (%) . (3.163)
If we let ;1 = 1 then we get the profile (3.106) and the limit g — 0 produces
the profile (3.97) as plotted in Fig. 3.9. Here we observe that p acts as a
parameter that represents a boundary condition for the inflow velocity at the
edge of the diffusion region. Then

An?uty
Yoy = —LE

(3.164)

(3.165)
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Figure 3.9: The inflow velocity profile (3.163) normalised by E plotted for
different values of . Note the negative sign appears due to the velocity at

x = [ pointing toward the origin.

where

16
m :1—05(17577%2 — 70n% + 1148y

— 1029n%v + 1960y — 15640u°0° 4 10378112

— 28044% % + 29612). (3.166)

Employing equations (3.158) and (3.116) yields

|m|

E= i <M) o (3.167)

For a small but non-zero p we get

16
m = —ﬁ(mn2 — 196nv — 2961°). (3.168)

Here p represents the size of nonlinear terms in the inflow velocity and for
any small but finite p we still get a VR scale. From equation (3.145) we can
conclude that if any fifth order terms are present in the leading order stream
function ¢; then we will attain a VR length scale. This leaves us with one

final particular case- a cubic inflow velocity profile. Hence we try the profile

¢1 = —? (z +b2?), (3.169)



56

where b > —1 to ensure that v,(1,0) < 0. Combining equations (3.139),

(3.145) and (3.149) produces

Va0 = a2 = 0. (3.170)

Substituting (3.170) reduces equations (3.140)-(3.154) to

150 o6 =to213 + 2904911, (3.171)
281 thos =210a¢13 + 30611, (3.172)
45mo10 =3v06P13 + 40s P11, (3.173)
6611012 =41os P13 + Shor0d11, (3.174)
Inbora =5¢010013 + 6¢012¢11, (3.175)
6boathas =i, (3.176)
5t02v26 = — 200424, (3.177)
Tho212s =3o6W24 — 68042, (3.178)
Yo2p31 =61 oy, (3.179)
V02033 =151 V26 — Yh2ad11 — 200431, (3.180)
V020035 =281 125 — 2haP11 + Yaadrs — 3osPs1 — 2¥0a P33, (3.181)
3005 =61041a0 — Yoathas + 3 (13031 — P33011) (3.182)
Nz = — 240011 (3.183)

We calculate the fourth order current profile as

E  20°E%
—9 = _ 4 184
J:(0,y) (2n 35 Y ) (3.184)
where
p=1[(2-3b)n— (8 —3b)v|. (3.185)

Equation (3.158) is trivially satisfied since 155 = 0. Instead we replace equa-

tion (3.158) with

1
E|¢42| < |2l (3.186)
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which could also be obtained from using the definition (3.119). Hence we

attain the reconnection rate

E= i (%) o (3.187)

There exists a particular solution b = 8/3 for a cubic inflow velocity profile in
which we do not obtain a VR scale when we use a fourth order approximation
for the current. However, the lack of a VR scale here is owing to the current
only being calculated to fourth order. If we were to include higher order terms
the VR scale would inevitably appear. So for any nonlinear inflow velocity we
will obtain a VR scale regardless of how weakly nonlinear the inflow velocity
profile is. In other words, the Park et al. scale is the fundamental length
scale of a VR current sheet but there exist particular solutions in which we

get separate viscous and resistive current layers.

3.14 Discussion

In this chapter, we have searched for the length scale of a reconnecting VR
current sheet. To this end we have reviewed a dimensional argu