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Preface

Some of the work presented in this thesis has been published in peer-reviewed

journals.

Chapter 3 was published as a paper (McMahon, 2017). In this thesis, we

have added Section 3.4 and 3.5 that describe the Craig-Henton reconnective

annihilation model and its extension into three dimensions respectively. These

chapters are necessary for understanding Section 3.8, in which we search for a

visco-resistive length scale in flux pile-up models, but are not original deriva-

tions and hence were not part of the published article.

Chapter 4 was first published as a letter (Litvinenko and McMahon, 2015a)

then in more depth as a paper (Litvinenko and McMahon, 2015b). The let-

ter (Litvinenko and McMahon, 2015a) comprises Sections 4.1-4.4, while the

paper (Litvinenko and McMahon, 2015b) comprises Sections 4.1-4.6. The ex-

tra sections in the latter are an alternative formulation and an extension into

electron inertia effects. While we used asympotic solutions to approximate a

singularity time, Janda (2018, 2019) and Brizard (2019) extended our work

to derive exact solutions in terms of the Weierstrass Elliptic Function and the

Jacobi Elliptic Function respectively. These solutions are described in Section

4.7.

Chapter 6 was published as a paper (McMahon, 2019). The only addition

to this thesis is Subsection 6.3.3 which describes an approximation using a

Hypergeometric function.



Abstract

In this thesis we investigate the effects of viscosity and the Hall effect on

magnetic reconnection. Magnetic reconnection is a process of releasing large

amounts of magnetic energy as observed in solar flares. In the first two chap-

ters, we describe the basic mathematics and early models of reconnection.

In Chapter 3, we search for a visco-resistive length scale in reconnection

solutions. This is demonstrated in reconnective annihilation and a quasi-one-

dimensional series expansion. We find that the visco-resistive length scale

appears organically unless a specific geometry is chosen. Upon adding small

scale perturbations, the visco-resistive length scale always appears.

In Chapter 4, we build on Litvinenko’s (2007) self-similar solution that

showed singularities appear with a Hall MHD X-point geometry for a certain

set of initial conditions. These singularities signal current sheet formation.

We consider a general set of initial conditions and find that the singularities

will form in this self-similar solution unless the axial field is many orders of

magnitude larger than the planar field.

In Chapter 5, we review the Craig and McClymont (1991) linear, oscillatory

model of reconnection. In Chapter 6, we attempt to quantify a general model

that includes viscosity, pressure and axial effects, the Hall effect and electron

inertia. We perform a dimensional analysis to find order-of-magnitude esti-

mates for how the aforementioned effects perturb the Craig and McClymont

(1991) solution. We verify these estimates with numerical simulations.

In Chapter 7, we give an overview of the thesis and make suggestions for

future work.
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Chapter 1

Introduction

1.1 Solar Flares

In 1859, Carrington and Hodgson observed a white flare of light emanating

from the sun, followed by a critical failure of telegraph systems all over North

America and Europe. What they saw we now know to be a solar flare (along

with a Coronal Mass Ejection), which if it ever were to occur again on the

same scale could have a devastating impact on 21st century technology. Of

course, not all flare events are potential doomsday scenarios, but smaller flares

could have an important effect on satellites or could pose a potential hazard

to astronauts.

Solar flares are huge eruptions of energy that can release up to 1025 J in

a time period of the order 100 seconds. While large-scale flare events could

pose a significant danger for Earth, accurate flare forecasting remains elusive.

In fact, the mechanism behind solar flares - magnetic reconnection - has many

fundamental aspects which remain unresolved. As its main purpose, this thesis

seeks to examine and illuminate the mysterious mechanisms behind magnetic

reconnection.

To understand the context within which solar flares manifest, the physical

environment of the sun needs to be considered. The four outer regions of

the sun comprise the photosphere, chromosphere, transition region and the
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Figure 1.1: A cross-sectional representation of the layers of the Sun

corona, whereas the inner regions are composed of the core, the radiative

zone and the convection zone (displayed in Fig. 1.1). The solar corona is the

outermost region and it is here that most solar flares occur. Fig. 1.2 shows

how reconnection can occur in the corona. Surprisingly, the corona is actually

hotter than the other outer regions even though they are closer to the core.

In this thesis, we will focus almost exclusively on events which occur within

coronal plasmas.

Region Density (g cm−3) Temperature (K) Thickness (km)

Photosphere 10−9 4000-6500 300

Chromosphere 10−12 4000-8500 2000

Transition Region 10−13 − 10−15 8000-500,000 100

Surface of the Earth 10−3 300 30

We model the plasma in the solar corona using the Magnetohydrodynamic

(MHD) equations (see e.g. Priest and Forbes, 2000; Biskamp, 2000). The
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Figure 1.2: Schematic drawing of magnetic reconnection occurring in the Solar

Corona. Oppositely directed coronal loops are forced together in the (red)

reconnection region.

MHD model unites Maxwell’s equations for magnetism and the fluid dynamic

equations for conservation of momentum and mass. The MHD equations are

highly non-linear and intractable to solve without some simplifying assump-

tions. Thus, we are always going to be limited in the applicability of our results

in some capacity.

1.2 Magnetic Reconnection

In the ideal MHD model resistivity is zero, and magnetic field lines are frozen

into the plasma and are not allowed to break. As magnetic field lines move

and are twisted into complex topological arrangements, we obtain a build up

of magnetic energy. If the magnetic gradient between the field lines becomes

sufficiently large, the ideal MHD properties no longer apply, and the field

lines are said to break and reconnect into simpler, lower energy topological

arrangements (see Fig. 1.3). During this process the magnetic energy stored
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Figure 1.3: Breaking and reconnecting of field lines. The red area represents

a current sheet where the local current is sufficiently large that ideal MHD

properties no longer apply.

in the field lines is released as kinetic energy.

The reconnection model is necessarily dependent on non-ideal terms in

Ohm’s law, namely the resistivity η. In dimensionless units η ∼ 10−14.5 in the

corona; this is small enough to allow sufficient magnetic energy to build up in

field lines before reconnection, but also results in a dissipation rate that is far

too small to match with physical observations. Resistive diffusion would take

the order of a million years to dissipate the amount of energy observed in a

typical flare. In reality, flares erupt on a time scale of the order 100 seconds (e.g.

Priest and Forbes, 2000). The need to account for this discrepancy between

the predicted rate and the observed rapid energy release is the driving force of

this thesis.

Owing to the small magnitude of resistive effects, we turn to other non-

ideal terms in the MHD equations. For instance, the Hall effect was shown,

in numerical simulations, to improve reconnection rates (e.g. Birn et al., 2001,

2005; Shay et al., 2001; Drake et al., 2008). However, more recent studies have

found that it is instead viscous diffusion that could be responsible for the rapid

release of energy solar flares (Craig et al., 2005; Armstrong et al., 2011). Even

if this were not the case, viscosity still plays a vital role in reconnection due to

the overwhelming magnitude of viscous terms in the solar corona in comparison

to resistive terms (Hollweg, 1985). Finally, while 2D reconnection has been

well studied, perhaps the most exciting new area for research is generalising
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2D results into a full 3D geometry. Due to the mathematical complexity of

a full 3D model, we stay within the realms of what is known as “2.5D”. In

2.5D, we consider all three dimensions but there is no dependence on the third,

taken to be z, dimension. That is to say, all partial derivatives with respect

to z vanish or ∂z = 0. We leave full 3D effects for further research.

In order to break the flux frozen-in condition we require currents of the

order η−1 in a length scale of
√
η, which naturally leads us to the notion of

a current sheet being the site for reconnection. Outside the current sheet,

the plasma is governed by large-scale ideal MHD dynamics. Thus, magnetic

reconnection problems naturally lend themselves to asymptotic analysis.

Magnetic reconnection has been observed in the solar corona (see e.g. As-

chwanden, 2006; Shibata and Magara, 2011, for a review). Magnetic reconnec-

tion also has other applications outside the sun. For example, reconnection in

the Earth’s magnetosphere enhances aurorae (e.g. Case et al., 2017).

1.3 Thesis Outline

In the following chapter, we outline the mathematical framework required to

understand magnetic reconnection. We introduce the MHD equations, includ-

ing the non-ideal effects of resistivity, viscosity, the Hall effect and electron

inertia. We detail the motivation for reconnection, the flux frozen-in condition

and show how it is able to be broken at a current sheet.

To establish the necessary conceptual framework for the original research

presented later in the thesis, we explore three reconnection models: the Sweet-

Parker (Parker, 1957) model for steady reconnection; the Imshennik and Sy-

rovatskǐi (1967) solution for current sheet formation, and the Forbes (1982) un-

steady reconnection approach. Sweet-Parker establishes an archetypal model

of reconnection at a current sheet formed by a magnetic X-point, while the

Imshennik and Syrovatskǐi (1967) model demonstrates current sheet formation

by means of a singularity. Finally, the Forbes (1982) model of one-dimensional
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unsteady reconnection resolves the singularity via resistive or gas pressure ef-

fects

In Chapter 3, we search for a visco-resistive length scale in magnetic flux

pile-up solutions and for steady reconnecting current sheets. We review the

viscous modifications to the fundamental (Sonnerup and Priest, 1975) pile-up

solution, namely the Gratton et al. (1990); Besser et al. (1990); Phan and

Sonnerup (1990); Jardine et al. (1992) solutions. Flux-pile up solutions were

later shown to be able to incorporate reconnective effects (Craig and Henton,

1995), which lead to viscous reconnective annihilation (e.g. Fabling and Craig,

1996; Craig and Litvinenko, 2012) in which a visco-resistive length scale was

nowhere to be found. By extending a generalised Craig-Henton type solution

(Priest et al., 2000; Craig and Watson, 2005) we were able to demonstrate

that a visco-resistive length scale would be inevitable for even an infinitely

small non-linear perturbation of any steady reconnective model. Furthermore,

we perform a series expansion (e.g. Cowley, 1975; Priest and Cowley, 1975;

Biskamp, 1986; Jamitzky and Scholer, 1995) of a steady reconnecting current

sheet and demonstrate that, apart from one very specific choice of initial cur-

rent profile, a visco-resistive length scale will appear.

In Chapter 4, we observe the temporal evolution of current at an X-point.

Chapman and Kendall (1963) showed that current will evolve exponentially

in an incompressible, ideal plasma. This solution was extended to include

resistive effects (Uberoi, 1963) and compressibility (Imshennik and Syrovatskǐi,

1967). Litvinenko (2007) demonstrated that including the Hall effect leads

to a finite-time singularity in a self-similar solution for the evolution of the

magnetic and velocity fields. Here, we expand upon Litvinenko’s solution

by considering a general set of initial conditions in 2.5D and find that the

finite time-singularity will occur unless the axial magnetic field is d−1
i

times larger than the planar field. We note that near the singularity, our

self-similar approximation is no longer valid and the current does not actually

become singular, we simply end up with very high currents in very short length
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scales, or in other words we have current sheet formation.

In Chapter 5, we review the Craig and McClymont (1991) model for purely

resistive linear reconnection. Linearising the resistive MHD equations around

a static X-point produces oscillatory reconnection. Energy is released in three

phases: an initial implosive phase described by advective waves, the important

oscillatory phase and finally a long-time tail of slow energy release. We review

the modifications of azimuthal effects, pressure effects (Craig and McClymont,

1993) and higher order equilibrium X-points (Craig, 1994).

In Chapter 6, we generalise the linear reconnection model to include viscos-

ity (Craig et al., 2005), the Hall effect (Senanayake and Craig, 2006a; Craig and

Litvinenko, 2008) and axial effects (Craig and McClymont, 1993). Our inves-

tigation is threefold. First, we formulate a generalised 2.5D linearised MHD

system in the presence of viscous, pressure, collisionless and axial magnetic

effects. Second, we find, in accordance with previous studies, that viscous

effects, while reducing the rate of reconnection, boost the rate of

total energy release. Moreover, viscous dissipation, as opposed to resistive

dissipation, is unlikely to be impeded by pressure forces. Third, we compare

two different equilibrium axial magnetic field profiles. One profile emulates a

quasi-separatrix layer (QSL) and the other profile emulates a 3D null point.

In 2.5D these profiles actually correspond to a hyperbolic field threaded by

an axial field and a null line respectively. We show evidence that fast

reconnection is only attainable in the presence of a null.

Finally, in Chapter 7 we present our conclusions and possibilities for further

research.



Chapter 2

MHD Equations and Early

Models of Reconnection

This thesis seeks to cast light on three central topics, namely: current sheet

formation, steady reconnection and unsteady reconnection. The next four

chapters will focus on a number of problems related to these three topics. In

this chapter, we will introduce the necessary mathematical framework to deal

with coronal plasmas and we will provide an illustrative example of each of our

three topics: the Imshennik and Syrovatskǐi (1967) solution for current sheet

formation, Forbes (1982)’s unsteady reconnection approach and the Sweet-

Parker (1957) model for steady reconnection.

First, we introduce the magnetohydrodynamic (MHD) equations, and show

how the flux frozen-in theorem follows naturally from the ideal MHD approx-

imation. The phenomenon of flux being tied to the plasma in ideal MHD

provides the mechanism for astronomically large amounts of magnetic energy

to build up and be stored in the field line topology, but also requires the en-

ergy release rate to be dependent on the extremely small non-ideal parameter

η ∼ 10−14.5. Accordingly, we move on to introduce the traditional Sweet-Parker

model of steady reconnection, which has a flux transfer rate ∼ √η.

Due to the low resistivity, reconnection requires regions of extremely large

currents ∼ η−1 called current sheets. This motivates the need for a model to
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explain how current sheets can naturally form in the solar corona. We explore

the X-point collapse model proposed by Dungey (1953) and later described

mathematically by Imshennik and Syrovatskǐi (1967). The X-point collapse

model utilises naturally forming finite-time singularities in the current func-

tion, which can be arrested by resistive or gas pressure effects (Forbes, 1982)

followed by unsteady reconnection (McClymont and Craig, 1996).

2.1 The MHD Equations

The MHD equations describe the evolution of the plasma velocity v and the

magnetic field B. In cgs units they consist of the conservation of mass equation

∂tρ+∇ · (ρv) = 0, (2.1)

the momentum equation

ρ [∂tv + (v · ∇)v] = −∇p+
1

c
J×B + ρν∇2v, (2.2)

Ohm’s law (Rossi and Olbert, 1970)

E +
1

c
v ×B =ηJ +

1

nec
(J×B−∇pe)

+
me

ne2
[∂tJ + (v · ∇)J + (J · ∇)v], (2.3)

Gauss’ law

∇ ·B = 0, (2.4)

Faraday’s law

∇× E = −1

c
∂tB, (2.5)

and Ampere’s law

∇×B =
4π

c
J. (2.6)

For both the sake of elegance and for the more practical reason of needing di-

mensionless parameters, such as the Reynold’s and Magnetic Reynold’s num-

bers, to use for asymptotic analysis and limiting cases we non-dimensionalise

the MHD equations.
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Our primary variables and parameters and their dimensions are summarised

in the following table (for values see e.g. Priest and Forbes, 2000; Craig and

Watson, 2005; Craig et al., 2005)

Symbol Meaning Dimensions Typical Coronal Value

v plasma velocity vA = B0/
√

4πρ0 108.5 cm s−1

B magnetic field B0 102G

ρ plasma density ρ0 10−14 g cm−3

l length L 109.5 cm

t time tA = L/vA 10 s

η resistivity 4πLvA/c
2 10−12 to 10−14.5

ν plasma viscosity LvA 10−4.5

and our secondary variables are

Symbol Meaning Dimensions

J current density cB0/(4πL)

E electric field vAB0/c

p gas pressure ρ0v
2
A

pe electron pressure ρ0v
2
A

The resistivity η and viscosity ν are assumed to be constant. The pressures

p and pe are assumed to be scalar (e.g., Wang et al., 2000), vA and tA are the

Alfvén velocity and time respectively, and we have assumed a temperature of

the order 106K.

The dimensionless equations are

E + v ×B = ηJ + di(J×B−∇pe)

+ d2
e[∂tJ + (v · ∇)J + (J · ∇)v], (2.7)

ρ [∂tv + (v · ∇)v] = −∇p+ J×B + ν∇2v, (2.8)

∂tρ+∇ · (ρv) = 0, (2.9)

∇ ·B = 0, (2.10)

J = ∇×B, (2.11)

∇× E = −∂tB. (2.12)
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Figure 2.1: Flux frozen-in theorem: C(t) is a curve with in the surface S(t).

The infinitesimal line segment dl is an element of C.

The dimensionless parameters that quantify the role of collisionless effects

are displayed in the table below.

Symbol Meaning Typical Coronal Value

di ion skin depth c/(Lωpi) ∼ 10−6.5

de electron skin depth c/(Lωpe) ∼ 10−8

ωpi ion plasma frequency (4πne2/mi)
1/2

ωpe electron plasma frequency (4πne2/me)
1/2

c speed of light 3× 1010 cm s−1

e electron charge 1.602× 10−19 C

mi ion mass 1.673× 10−24 g

me electron mass 9.109× 10−28 g

n number density 109 cm−3
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2.2 Flux Frozen-In Theorem

In order to study how magnetic reconnection is able to liberate such vast

quantities of energy, we first need to understand how magnetic energy is able

to build up in the solar corona. Consider an ideal plasma with η ≡ 0. Then

Ohm’s law (2.7) reduces to

E + v ×B = 0, (2.13)

which we take the curl of to derive the ideal induction equation using (2.12)

∂B

∂t
= ∇× (v ×B) . (2.14)

We define the magnetic flux as

Φ(t) =

∫
S

B · dS, (2.15)

through a surface S(t). Consider a curve C(t) within S (Fig. 2.1). If dl is an

element of C, then it carves out an area

v × dl (2.16)

per unit time. Hence differentiating (2.15) with respect to time, we obtain the

rate of change of flux

dΦ

dt
=

∫
S

∂B

∂t
· dS +

∫
C

B · (v × dl) . (2.17)

Rewriting the final term as∫
C

B · (v × dl) = −
∫
C

(v ×B) · dl (2.18)

and applying Stokes’ theorem yields

dΦ

dt
=

∫
S

[
∂B

∂t
−∇× (v ×B)

]
· dS, (2.19)

which vanishes by (2.14).

This result gives rise to the notion of flux tubes- surfaces that contain

magnetic field such that the cylindrical sides of the tube are everywhere parallel
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Figure 2.2: A flux tube: A surface that contains magnetic field such that the

cylindrical sides of the tube are parallel to the magnetic field lines (red) along

its whole length.

to the magnetic field lines (see Fig. 2.2). Hence, the total magnetic flux of the

tube must remain constant. Thus ideal MHD restricts field lines from touching

and forbids any change in topology of field lines, though tubes are allowed to

be squeezed and stretched. This is the flux frozen-in theorem.

The ideal MHD approximation holds as the term ηJ is small, that is regions

of low current. Hence, current sheets represent excellent sites for magnetic

reconnection as they comprise long, thin regions of high current. Outside

current sheets, we still apply the flux frozen-in theorem.

2.3 Steady Reconnection: The Sweet-Parker

model

When two oppositely directed magnetic field lines are carried towards each

other they are, under certain circumstances able to break off and rearrange
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Figure 2.3: A magnetic X-point that collapses to form a current sheet (grey),

which can then reconnect. At the centre of the X-point lies a magnetic null

point surrounded by hyperbolic, oppositely directed magnetic field lines (red).

into new field lines. This process, known as reconnection, was first proposed

by Sweet (1958) and Parker (1957) in order to account for the energy released

in solar flares. The Sweet-Parker model, based largely on dimensional argu-

ments, predicted a release of energy that is large enough to explain solar flares,

however it could not account for the rapid release of energy in solar flares.

Magnetic reconnection takes place at current sheets, which comprise long

thin regions of extremely high current density. In 2D these often arise from

the collapse of magnetic X-points (see Fig. 2.3). At the centre of the X-

point lies a magnetic null point surrounded by hyperbolic magnetic field lines.

A magnetic null point is defined to be a point where the magnetic field

vanishes. A null point is required in order for reconnection to occur in two

dimensions. In three dimensions, however, a null point is no longer necessary

for reconnection.

This breaking and rearranging of magnetic field lines is not possible in ideal

MHD. Hence we need to consider non-ideal terms in Ohm’s law. The most

obvious choice is to include the resistive term ηJ. Later we will also consider

terms that are even smaller (in the solar corona): the Hall and electron inertia

terms. By including the resistive term we limit ourselves to the region in

which it becomes significant. That is, in a region with a length scale of order
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√
η. Given the tiny size of η this means that the current J must be locally

for very high reconnection to work. As the field lines are fairly straight, that

means reconnection takes place in a small rectangular region, often called the

diffusion region due to the resistive term’s ability to diffuse magnetic energy.

For the rest of this thesis we define purely resistive to refer to plasma

that is in every way, other than the resistive diffusion term ηJ in Ohm’s law,

ideal.

In purely resistive, steady, incompressible 2D MHD we have:

E + v ×B = ηJ, (2.20)

(v · ∇) v = ∇p+ J×B. (2.21)

In addition the incompressibility assumption means that

∇ · v = 0, (2.22)

and Gauss’s law tells us

∇ ·B = 0. (2.23)

We have non dimensionalised equations (2.20)-(2.23) in terms of the Alfvén

velocity vA, a typical magnetic field value B0 ∼ 100G and a typical length scale

L. We consider a diffusion region along the x-axis with length L, which is taken

to be 1 in our units, and width l (displayed in Fig. 2.4). The inflow magnetic

field component Bx is also taken to be 1 in units of B0. Our remaining variables

are the inflow velocity vy, outflow velocity vx, and outflow magnetic field By.

Differentiating with respect to x is of the order 1/L = 1 and differentiating

with respect to y is taken as ∼ 1/l. From equation (2.22)

vx
1
∼ vy

l
. (2.24)

Similarly, for equation (2.23)

1

1
∼ By

l
. (2.25)
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Figure 2.4: Schematic representation of the Sweet-Parker model. Magnetic

field reconnects at the current sheet (red).

At the origin we can take B = 0 and taking E = Eẑ and J = J ẑ

E ∼ ηJ. (2.26)

Outside the diffusion region we can neglect ηJ. Hence E is proportional to the

inflow speed and magnetic field:

E ∼ vy (2.27)

Following Ampere’s law

J = ∇×B, (2.28)

we can take the current at the origin to be

J ∼ Bx

l
=

1

l
. (2.29)

Substituting equation (2.29) into (2.26) and equating to equation (2.27), we

have

vy ∼
η

l
. (2.30)



17

From equation (2.24), l ∼ vy/vx. Hence

v2
y ∼ ηvx. (2.31)

Taking the x-component of the momentum equation and using equation (2.24)

(v · ∇) v · x̂ ∼ v2
x, (2.32)

and using equation (2.29)

(J×B) · x̂ ∼ By

l
. (2.33)

Combining equations (2.25), (2.32) and (2.33) yields

v2
x ∼

By

l
∼ 1. (2.34)

Unsurprisingly, the outflow velocity then is taken to be of the order of its

typical reference value - the Alfvén velocity - so that vx = vA ≡ 1. Combining

equations (2.24) and (2.30) we find

vy ∼ l ∼ √η. (2.35)

The dimensionless inflow velocity vy is the reconnection rate, often called the

inflow Alfvén Mach number Mi. In the solar corona, fields reconnect at be-

tween 10−3 and 10−6 of the Alvén speed (Priest and Forbes, 1986). However,

typical values of the solar corona give a dimensionless resistivity of η ∼ 10−14.5

(see e.g. Craig and Watson, 2005).

2.4 The Petschek model

The first and most popular solution to this problem for a long period of time

was the Petschek (1964) model. Petschek considered a diffusion region with

a length λ and width l much smaller than the global length scale L. Fur-

thermore, he considered a wide X-point angle with slow mode shocks along

the separatrices. Consequently, the inflow speed vinflow into the region (for an

incompressible plasma) is of the order

vinflow ∼ voutflow
l

λ
, (2.36)
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Figure 2.5: Schematic representation of the Petschek model. Magnetic field

reconnects at the current sheet (red). The blue lines represent slow mode

shocks.

where the outflow speed voutflow has magnitude vA ∼ 1. Thus the inflow speed

depends on the aspect ratio l/λ of the diffusion region. If l ∼ λ we have rapid

reconnection.

Consequently, for two decades, the reconnection problem was thought to

have been solved. However, while physically valid, numerical simulations of

driven reconnection were unable to produce a Petschek configuration for small

η. On the other hand, a Petschek-like configuration was found in simulations

with an anomalous (i.e. locally enhanced) resistivity (e.g Heyn and Semenov,

1996). For a full discussion, we refer the reader to the monographs by Priest

and Forbes (2000) or Biskamp (2000).

2.5 Current Sheet Formation in Compressible

MHD

As proposed by Dungey (1953), a small perturbation of a current-free X-point

can lead to an explosive growth of current. In certain cases, the current can
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become singular in a finite-time, which we call current sheet formation. Of

course, an infinite amount of current density cannot actually exist. From a

mathematical perspective, near the singularity our model must break down and

no longer be a suitable approximation for a reconnecting plasma. Physically,

this means that effects such as pressure and resistive effects are able to limit

the growth of the current and quench the singularity.

Taking into account Gauss’ law:

∇ ·B = 0, (2.37)

we can set

B = ∇× ψẑ. (2.38)

in 2.5D. Thus the compressible MHD equations can be written as:

∂ρ

∂t
+ v · ∇ρ = −ρ∇ · v, (2.39)

∂ψ

∂t
+ v · ∇ψ = η∇2ψ, (2.40)

ρ

(
∂v

∂t
+ (v · ∇) v

)
= −∇p−∇2ψ∇ψ. (2.41)

We adopt the polytropic form for gas pressure

p = β̄ρr, (2.42)

where β̄ and r are constants. Imshennik and Syrovatskǐi (1967) found the

following self-similar solution

ψ = α(t)x2 − β(t)y2 + 2η

∫
(α− β) dt, (2.43)

ρ = ρ(t), (2.44)

v = (γ(t)x, δ(t)y) . (2.45)

This leads to the set of ODEs:

α̇ + 2αγ = 0, (2.46)

β̇ + 2βδ = 0, (2.47)
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ρ
(
γ̇ + γ2

)
= 4α (β − α) , (2.48)

ρ
(
δ̇ + δ2

)
= −4β (β − α) , (2.49)

ρ̇+ ρ (γ + δ) = 0. (2.50)

We assume here that α(t) and β(t) are always positive in order to preserve the

geometry of our X-point. Making the transformation

α =
1

a2
, (2.51)

β =
1

b2
, (2.52)

yields

γ =
ȧ

a
, (2.53)

δ =
ḃ

b
, (2.54)

ρ =
4

ab
, (2.55)

ä = −b
(

1

a2
− 1

b2

)
, (2.56)

b̈ = a

(
1

a2
− 1

b2

)
. (2.57)

In order to illustrate the singularity, we choose the initial conditions

α(0) = a(0) = 1, (2.58)

β(0) = b(0) = 1, (2.59)

γ(0) = γ0, (2.60)

δ(0) = δ0. (2.61)

Here we let γ0 and δ0 be non-zero in order to avoid trivial static plasma

solutions. Furthermore, due to the symmetry of the X-point, that is by assert-

ing that the x coordinate is not inherently preferable to the y coordinate, we

find that the replacement

α→ −β, β → −α, γ → δ, δ → γ, (2.62)

corresponds to swapping the x and y axis. Hence, we only need to consider

the case γ0 ≥ δ0. The case γ0 = δ0 is a special class of current-free solutions
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that we do not consider here (see Imshennik and Syrovatskǐi, 1967). Thus we

assert that a > b and ȧ > ḃ for early times. Equations (2.56) and (2.57) tell

us that ä > 0 and b̈ < 0 for early time. Hence, a > b for all time and since

b̈ < 0, we will reach a singular point b = 0 at some finite time ts. Near the

singularity, equations (2.56) and (2.57) can be approximated by

ä =
1

b
, (2.63)

b̈ = − a
b2
. (2.64)

Near the singularity we approximate the solution as

b = ctp, (2.65)

and solve for the constants c and p. This yields the asymptotic solutions

b =
9

2
a (ts) (t− ts)2/3 , (2.66)

a = a(ts). (2.67)

An interesting special case, that we explore in Chapter 4, is the incompressible

case γ0 = −δ0. As discussed in Chapter 4, the incompressible case does not

lead to a finite time singularity (Chapman and Kendall, 1963; Uberoi, 1963;

Sulem et al., 1985).

2.6 Unsteady Reconnection in One Dimension

Forbes (1982) uses a one-dimensional magnetic configuration to describe an

evolving current sheet. While the one-dimensional model is a severe assump-

tion, it allows for analytical solutions which describe non-linear behaviour. In

Chapters 5 and 6 we will consider analytical solutions for 2D and 2.5D, that

is 3D models with no dependence on the z co-ordinate, but our drawback will

be that we can only describe linear behaviour. By employing numerical sim-

ulations, McClymont and Craig (1996) were able to describe non-linear 2.5D

reconnection and show the limiting cases where the Forbes (1982) model is

necessary and where a linear model is sufficient.
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In one dimension the purely resistive MHD equations with a magnetic field

B = B(x, t) ŷ and velocity field v = v(x, t) x̂ reduce to

Ḃ + (vB)′ = ηB′′ (2.68)

ρ [v̇ + vv′] = −p′ −BB′, (2.69)

ρ̇+ (ρv)′ = 0, (2.70)

where the overdot refers to differentiation with respect to time and a dash refers

to differentiation with respect to x. As with the Imshennik and Syrovatskǐi

(1967) model we adopt the polytropic gas pressure (2.42) and let

B =α(t)x, (2.71)

v =q(t)x, (2.72)

ρ =ρ(t), (2.73)

which reduces equations (2.68)-(2.70) to

α̇ + 2αq =0, (2.74)

ρ
(
q̇ + q2

)
=− α2, (2.75)

ρ̇+ ρq =0. (2.76)

Substituting q = −ρ̇/ρ into (2.74) and applying the initial conditions (Forbes

and Speiser, 1979)

α(0) = 1, ρ(0) = 1, q(0) = 0, (2.77)

yields the solution

α = ρ2. (2.78)

Substituting (2.78) into (2.75) produces the equation

q̇ + q2 = −ρ3, (2.79)

which we solve by letting

q(t) = f(t)ρ(t), (2.80)
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where f = −ρ̇/ρ2 by (2.76). Thus equation (2.79) simplifies to

ḟ = −ρ2. (2.81)

Hence, substituting ρ2 = −ρ̇/f :

fḟ = ρ̇, (2.82)

and integrating with respect to time yields

1
2
f 2 = ρ− 1, (2.83)

after solving for the integration constant since f(0) = 0. Observing that (2.83)

has two solutions, we take the negative root (since ρ > 0 in (2.80) ) to ensure

that at x = ±1, the plasma is flowing towards the origin (i.e. ensuring that

q < 0 in (2.72)) . Hence putting

q = −
√

2ρ (ρ− 1)1/2 , (2.84)

into (2.76) yields

ρ̇

ρ2 (ρ− 1)1/2
=
√

2, (2.85)

which integrates to (Forbes and Speiser, 1979)

(ρ− 1)1/2

ρ
+ tan−1

[
(ρ− 1)1/2

]
=
√

2t. (2.86)

We calculate the singularity time ts by letting ρ → ∞. The first term ap-

proaches zero and the second term on the left hand side approaches π/2 as the

density approaches infinity. Hence

ts =
π

2
√

2
. (2.87)

To calculate the length scale we impose some boundary at x = ±1. Since far

from the origin the plasma is approximately ideal, we say that information

from the boundary travels in the form of waves with speed vA = B/
√
ρ. The

speed of such a wave is given by (Priest and Forbes, 2000)

dx

dt
= u− vA. (2.88)
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Substituting our values for B and u into (2.88) yields

ẋ = − ρ̇
ρ
x− ρ3/2x. (2.89)

Covering up the last term on the right-hand side motivates the substitution

x(t) =
g(t)

ρ(t)
, (2.90)

which reduces (2.89) to

ġ = −ρ3/2g. (2.91)

Finally letting ρ = −ρ̇/q, we end up with the relation

ġ

g
=

ρ̇√
2ρ(ρ− 1)

, (2.92)

which upon integration and substitution into (2.90), we obtain the length scale

(Forbes, 1982)

x = ρ−1
(√

ρ+
√
ρ− 1

)−√2

. (2.93)

2.6.1 After the Singularity

In order to arrest the singularity, we assume that the current build up is

stalled by the resistivity or gas pressure (Forbes, 1982). For resistive diffusion,

we balance the terms

(vB)′ ∼ ηB′′, (2.94)

in equation (2.68), which requires dimensionally that

v ∼ η

x
. (2.95)

Recalling that near the singularity ρ� 1, the length scale (2.93) and velocity

function (2.84) become

x ∼ ρ−1.707, u ∼ ρ3/2x. (2.96)

Substituting (2.96) into (2.95) and (2.78) we obtain the scalings required to

halt the collapse of a current sheet (Forbes, 1982; McClymont and Craig, 1996)

ρ ∼ η−0.522, x ∼ η0.892, B ∼ η−0.153, J ∼ η−1.045. (2.97)
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These scalings are especially significant, as pointed out by Priest and Forbes

(2000), since they imply a maximum reconnection rate of

E ∼ ηJ ∼ η−0.045, (2.98)

which would be very fast compared to the Sweet-Parker model. We often use

the maximum reconnection rate in unsteady models as a comparison with the

steady Sweet-Parker rate since if the maximum reconnection rate is slow, we

can immediately dismiss the model. In this case, since our maximum recon-

nection rate is fast, we can dig deeper and search for the average reconnection

rate given by

Eave =
1

τ

∫ τ

0

ηJ dt (2.99)

over a collapse time τ . Letting J = ρ2 from (2.78), we obtain

Eave =
η

τ

∫ ρτ

1

ρ2

ρ̇
dρ, (2.100)

which, after recalling that ρ̇/ρ2 = −f(ρ), integrates to

Eave =
η

τ

√
2 (ρτ − 1)1/2 . (2.101)

Taking τ to be the singularity time ts and employing equations (2.87) and

(2.97) yields

Eave ∼ η0.739, (2.102)

which we deem slow since it scales as a positive power of η.

Alternatively, if gas pressure effects arrest the singularity then we balance

the terms

BB′ ∼ β̄ (ρr)′ (2.103)

in equation (2.69), where we have used the polytropic gas pressure (2.42). For

a sufficiently high temperature, we assume a monatomic gas with r = 5/3.

Substituting the magnetic field scaling (2.78) and the length scale (2.93), with

ρ� 1, into (2.103), we find (Forbes, 1982)

ρ ∼ β−0.925, x ∼ β1.579, B ∼ β̄−0.271, J ∼ β−1.850. (2.104)
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Finally, we use the scaling J ∼ β̄−1.850 as a condition on when pressure effects

will overwhelm resistive effects. A quick comparison to the resistive scaling

J ∼ η−1.045 yields

β̄ . η0.565, (2.105)

as a limitation on when we can safely ignore pressure. Considering that η � 1,

we require a very small β̄ ∼ T/B2 in order for gas pressure effects to be

negligible, or in other words a very high temperature or a very small magnetic

pressure.

2.7 Summary

We have first introduced then, for the sake of easier mathematical manipu-

lation, non-dimensionalised Magnetohydrodynamic equations. In ideal MHD,

the rate of change of flux through a surface is zero, leading to the idea that flux

is frozen in to the plasma. However, when resistive effects become significant,

the flux frozen-in condition is broken and topology may change. Resistive ef-

fects only become large enough in the presence of very high current over a very

small length scale - in other words at a current sheet.

The Sweet-Parker mechanism requires a current sheet. At the current

sheet, resistive effects are significant and field lines are allowed to break and

reconnect. Far from the current sheet ideal MHD applies. Hence, the Sweet-

Parker model naturally lends itself well to asymptotic analysis. Such an anal-

ysis predicts the release of a large amount of magnetic energy at the rate of

√
η. This is a rate many orders of magnitude smaller than observations. A

“fast” magnetic reconnection rate we define to have a logarithmic dependence

on η or be dependent on η to a zero or negative power. This slow reconnection

rate is the central problem that motivates the original research in this thesis.

Furthermore, we have introduced a model for current sheet formation. In

a compressible, purely resistive framework Imshennik and Syrovatskǐi (1967)

found a self-similar solution that leads to a finite time singularity in the current.
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Notably, the same singularity does not occur in a finite time in incompressible

MHD (Chapman and Kendall, 1963). Clearly, a singular current is not phys-

ically possible. In this case, the singularity is ultimately arrested by pressure

effects and is described (in one dimension) by the Forbes (1982) model.



Chapter 3

Visco-Resistive Length Scale in

Flux Pile-Up and Series

Solutions for Steady Magnetic

Reconnection

3.1 Introduction

Flux pile-up is a regime in which oppositely directed magnetic field lines are

swept towards each other and as they approach the origin they are pushed

together and the flux becomes high at the edge of the diffusion region (Priest

and Forbes, 1986). A particular case of flux pile-up is magnetic annihilation,

in which straight magnetic field lines are directed at each other in a stagnation

point plasma flow. The magnetic field is said to be annihilated at the origin.

This differs from magnetic reconnection, in which there is a topological rear-

rangement of field lines at the origin. However, by introducing a shear flow,

Craig and Henton (1995) were able to construct an annihilation model that can

be turned into a reconnection model by allowing for topological rearrangement.
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3.2 Governing Equations

We consider 2D steady, incompressible (ρ = 1) MHD and ignore the Hall

effect and electron inertia (di = de = 0). The dimensionless MHD system

(2.7)-(2.12) reduces to

E + v ×B = ηJ (3.1)

(v · ∇)v = −∇p+ J×B + ν∇2v, (3.2)

∇ · v = 0, (3.3)

∇ ·B = 0, (3.4)

J = ∇×B, (3.5)

∇× E = 0. (3.6)

We use the flux function ψ(x, y) and stream function φ(x, y) to satisfy

equations (3.3) and (3.4):

B =∇× ψẑ = (∂yψ,−∂xψ, 0), (3.7)

v =∇× φẑ = (∂yφ,−∂xφ, 0), (3.8)

Assuming E only has a ẑ component, the solution to (3.6) is

E = Eẑ, (3.9)

where E is a constant. After taking the curl of (3.1) and (3.2), The MHD

equations simplify as follows:

−E + [ψ, φ] =η∇2ψ, (3.10)

[∇2φ, φ]− ν∇2
(
∇2φ

)
=[∇2ψ, ψ], (3.11)

where Poisson bracket notation is defined as

[ψ, φ] = (∂xψ)∂yφ− (∂yψ)∂xφ.
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3.3 Flux Pile-Up Models

The flux pile-up regime is of interest to us because it provides one of the

few avenues for finding exact analytical solutions to the MHD equations from

which we can describe a current sheet. The simplest non-trivial flux pile-up

solution (Sonnerup and Priest, 1975) comes from considering straight vertical

magnetic field lines and sending them towards the origin, that is to say we let

B = B (x) ŷ. (3.12)

and assume a hyperbolic plasma flow

φ = −xy (3.13)

and neglecting viscosity (ν = 0). Substituting (3.13) into (3.10) yields

E − xB = η
∂B

∂x
, (3.14)

which has the solution

B =
2E√

2η
daw

(
x√
2η

)
, (3.15)

in terms of the Dawson function

daw(u) = e−u
2

∫ u

0

eµ
2

dµ. (3.16)

Later models generalised the flux pile-up model to include viscosity and

vorticity. Gratton et al. (1988, 1990) considered a viscous stagnation point

flow, however their solution did not represent any realistic flow for magnetic

annihilation. The problem is that their velocity field exhibited cusplike be-

haviour which implied a viscous drag force directed towards the origin (Son-

nerup and Phan, 1990). Besser et al. (1990) modified Gratton et al.’s solution

to represent a perturbed Sonnerup and Priest (1975) flow, rather than a cusp-

like flow. Hence, Besser et al. (1990) assume that the magnetic field takes the

form (3.12). However for a more general plasma flow, equation (3.14) can be

generalised to

E +
∂φ

∂y
B = η

∂B

∂x
. (3.17)
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For simplicity, we follow Besser et al. (1990) and consider

vx =
∂φ

∂y
= f(x), (3.18)

so that equation (3.17) has the solution

B =
E

η
exp

(
K(x)

η

)∫ x

1

exp

(
−K(λ)

η

)
dλ, (3.19)

where

K(x) =

∫ x

1

f(ξ)dξ. (3.20)

Integrating equation (3.18) yields

φ = yf(x) + g(x). (3.21)

Using a steady viscous flow requires that the momentum equation takes the

form

(v · ∇) v = −∇p−∇
(

1
2
B2
)

+ ν∇2v. (3.22)

Taking the curl and noting that ∇× v = −∂xxφ ẑ gives

y
[
νf (4) + ff ′′′ − f ′f ′′

]
+
[
νg(4) + fg′′′ − f ′′g′

]
= 0. (3.23)

Equating each bracket to zero and integrating yields

νf ′′′ + ff ′′ − f ′2 = const, (3.24)

νg′′′ + fg′′ − f ′g′ = const. (3.25)

For our purposes here we are not interested in finding a general solution but

rather a particular solution. Hence we assume integration constants to be zero.

Following Besser et al. (1990) we let

f(x) = −x (3.26)

as in the Sonnerup-Priest model. Substituting into equation (3.25) we are left

with

νg′′′ − xg′′ + g′ = 0. (3.27)
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Integration yields

νg′′ − xg′ + 2g = 0. (3.28)

which we can write as a Sturm-Liouville equation

d

dx

(
e−

x2

2ν g′(x)
)

+
2

ν
e−

x2

2ν g(x) = 0. (3.29)

Eventually we end up with the solution

g(x) =c1

[(
ν − x2

) ∫
exp

(
x2

2ν

)
dx+

√
ν x exp

(
x2

2ν

)]
+ c2(ν − x2). (3.30)

Finally, we substitute equations (3.26) and (3.30) into (3.21) to describe φ(x, y).

Hence, we have generalised the exact, irrotational Sonnerup and Priest (1975)

solution to add a rotational component, provided a finite c2 in equation (3.30).

3.4 Craig-Henton solution

The Craig-Henton (1995) solution is not strictly a magnetic annihilation so-

lution since it throws away the condition (3.12) and hence the magnetic field

lines are not straight. However, it shares enough similarities with magnetic

annihilation that it should be considered with them. It is however an example

of a flux pile-up solution. If we ignore (3.12) then the MHD equations become:

[
∇2φ, φ

]
=
[
∇2ψ, ψ

]
, (3.31)

E + [ψ, φ] = η∇2ψ. (3.32)

Their approach was to first solve equation (3.31) in such a way that the ad-

vection term [ψ, φ] does not disappear in equation (3.32). Which means we

cannot let ψ = f (φ). They used a harmonic function H(x, y), where

∇2H(x, y) = 0. (3.33)

Let

φ = αH(x, y) + u(x), (3.34)
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ψ = βH(x, y) + b(x). (3.35)

Substituting (3.34) and (3.35) into (3.31) yields

(αu′′′ − βb′′′) ∂yH = 0. (3.36)

We solve (3.36) by simply letting

u(x) =
β

α
b(x), (3.37)

and ignoring any integration constants. Equation (3.32) then becomes

E +

(
α2 − β2

α

)
u′(x)∂yH = ηu′′(x). (3.38)

From here, we can infer that ∂yH is a function of x only. Hence, by equation

(3.33), H(x, y) must take the form H = xy. Solving for u in equation (3.38)

yields the solution

u(x) =
E

ηµ
daw (µx) , (3.39)

where

µ2 =
(β2 − α2)

2αη
. (3.40)

Much like the Besser et al. (1990) solution, the Craig-Henton solution takes a

stagnation point flow and distorts it by adding a shear flow. The difference is

that the Craig-Henton solution has non-straight magnetic field lines.

3.5 Three Dimensional Reconnective Annihi-

lation

While, in this thesis, we restrict ourselves to a 2.5D regime, one of the reasons

the Craig-Henton model is important is that it scales up easily into three

dimensions. Craig and Fabling (1996) split the magnetic field and plasma

velocity functions into a background field P(x,y, z) and a shear field Q(x, y, z)

where

B = λP + Q (3.41)



34

and

v = P + λQ. (3.42)

We take the simplest possible (non-trivial) 3D background field that satisfies

∇ ·P = 0:

P = (−x, κy, (1− κ)z). (3.43)

Taking the field line equations (Fabling, 1997)

−dx

x
=

dy

κy
=

dz

(1− κ)z
, (3.44)

produces the characteristic equations

ψ =− yxκ, (3.45)

χ =zx1−κ, (3.46)

ξ =yz(1−κ)/κ, (3.47)

where ψ, χ and ξ are constant along field lines. Letting κ = 0 reduces us to

the 2D xz plane and letting κ = 1 reduces us to the xy plane. Thus we take

0 ≤ κ ≤ 1. (3.48)

Much as in the 2D case we add a shearing field that satisfies ∇ ·Q = 0:

Q = X(y, z)x̂ + Y (x, z)ŷ + Z(x, y)ẑ. (3.49)

Letting

Q = Y (x)ŷ + Z(x)ẑ (3.50)

corresponds to what is known as a fan current geometry and

Q = X(y, z)x̂ (3.51)

corresponds to what is known as a spine current geometry (see Lau and Finn,

1990, for a definition). Fully three dimensional magnetic reconnection is be-

yond the scope of this thesis (see e.g. Pontin, 2011, for a review) but it is worth

noting here how easily the Craig-Henton model translates into 3D.
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3.6 Visco-Resistive Length Scale in Magnetic

Flux Pile-Up

Different models of visco-resistive (VR) reconnection have produced different

length scales for a VR current sheet. Significantly, a VR scale does not appear

in a certain class of reconnection solutions called flux pile-up solutions (Besser

et al., 1990; Phan and Sonnerup, 1990; Craig and Litvinenko, 2012). Thus,

any VR length scale is not necessarily a universal scaling for reconnection,

a surprising result considering the simple VR dimensional argument used by

Park et al. (1984) should be widely applicable. Furthermore, the VR scale

does feature in many classes of solutions, such as linear reconnection (Craig

et al., 2005; Titov and Priest, 1997; Hassam and Lambert, 1996), reconnective

annihilation solutions (Fabling and Craig, 1996; Litvinenko, 2006; Craig and

Litvinenko, 2012), more general scaling arguments (Simakov et al., 2010) and

plasmoid instability models (e.g. Comisso and Bhattacharjee, 2016, and refer-

ences therein). This discrepancy in length scales for seemingly similar models

motivates our investigation to find a more detailed description of a VR current

sheet.

3.7 Dimensional Argument

Before we search for the visco-resistive length scale in flux pile-up models,

we first review the Park et al. (1984) scaling argument and the flux pile-up

solutions that incorporate viscosity. The first step to determine some unknown

scaling is to use a rough estimation. Here, we review a dimensional argument

(Park et al., 1984) to demonstrate where the VR length scale originates. We

use our own notation and units in order to provide context for arguments we

present later in the paper. From equation (3.1) we estimate

−E ∼ [ψ, φ] ∼ η∂2
xψ (3.52)
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for the outflow flux ψ0 and inflow stream function magnitude φ0. We normalise

units and choose ∂y ∼ 1/L ∼ 1. The outflow velocity and magnetic field are

also order unity. Approximating ∂x ∼ 1/l gives

ψ0φ0

l
=
ηψ0

l2
. (3.53)

Hence

η = lφ0. (3.54)

Similarly, for equation (3.2) we obtain

− φ2
0

Ll3
− ν φ0

l4
= − ψ

2
0

Ll3
, (3.55)

where the negative sign in the first term comes from ∂2
xvy < 0 for vy = −∂xφ >

0 (Biskamp, 2000, 1993) since we assume that the velocity field localises around

the origin so if vy is positive at the origin we can also say that it is concave

down and hence ∂2
xvy is negative. The same argument applies for ψ0 term on

the right hand side. Rearranging yields

φ0 = ψ0

(
1 +

νL

φ0l

)−1/2

. (3.56)

Substituting equation (3.54) into (3.56) gives

φ0 = ψ0

(
1 +

ν

η

)−1/2

. (3.57)

Normalising the magnetic field so that By = ∂xψ ∼ 1 requires that

ψ0 ∼ l, (3.58)

and hence the visco-resistive scale

l ∼ √η
(

1 +
ν

η

)1/4

. (3.59)

For the limiting case ν � η, we obtain the scaling

l ∼ (ην)1/4 , (3.60)

which is the length scale that appears in previous solutions (e.g. Titov and

Priest, 1997; Craig et al., 2005).
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3.8 Presence of the VR Scale in Flux Pile-Up

Models

A peculiarity of the flux pile-up solutions in Sections 3.3 and 3.4 is the absence

of a VR length scale. In Besser et al.’s solution we can see the emergence of

a length scale
√
η in equation (3.19) but a length scale

√
ν in equation (3.30).

Which suggests that unlike traditional reconnection models (Park et al., 1984),

we have separate viscous and resistive current layers. This also appears to be

a feature of the reconnective Craig-Henton solution (Craig and Henton, 1995;

Fabling and Craig, 1996; Craig and Litvinenko, 2012).

The reason for a lack of a VR length scale in Besser et al.’s solution is clear.

The magnetic field is solved in terms of the function f(x) = vx. Since the

function f(x) is chosen so that viscous terms will vanish, the magnetic field

is independent of viscosity. The viscosity does however feature in equation

(3.30) for g, which is solved independently of the magnetic field and hence the

resistivity. Thus B depends on η and vy = −yf ′(x)− g′(x) depends on ν.

However, in other more general solutions for magnetic annihilation (Son-

nerup and Phan, 1990; Jardine et al., 1992), the function f(x) has to be solved

from equation (3.24). We can make equation (3.24) dimensionless by making

the transformation

x̄ =
x

ν
. (3.61)

Equation (3.24) becomes

f ′′′(x̄) + f(x̄)f ′′(x̄)− f ′2(x̄) = 0. (3.62)

While we have to resort to numerical methods to find any physically meaningful

solutions to (3.62) (see Jardine et al., 1992), we argue that if the velocity

function vx = f(x) has a viscous dependence then the magnetic field (3.19)

will also have a viscous dependence, hence a VR length scale will appear

naturally. More generally, as long as the third derivative of f(x) does not
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vanish we should expect a viscous scale in the velocity and a VR scale in the

magnetic field.

We expect that the same sort of dimensional argument should also apply

for the reconnective flux pile-up Craig-Henton solution. In order to force a VR

scale we adopt a more general solution described by Priest et al. (2000) and

Craig and Watson (2005):

ψ = ψ0(x) + ψ1(x)y, (3.63)

φ = φ0(x) + φ1(x)y. (3.64)

Substituting into equations (3.10) and (3.11) yields, for the case ∂x � ∂y:

−φ1ψ
′
1 + φ′1ψ1 − ηψ′′1 =0, (3.65)

νφ′′′1 − φ′21 + φ′′1φ1 + ψ′21 − ψ′′1ψ1 =constant, (3.66)

E − φ1ψ
′
0 + φ′0ψ1 − ηψ′′0 =0, (3.67)

νφ′′′0 − φ′0φ′1 + φ′′0φ1 + ψ′1ψ0 − ψ′′0ψ1 =constant (3.68)

Assuming none of the above terms vanish we can put forward a simple dimen-

sional argument to find a length scale.

Letting x ∼ l and substituting into equation (3.65) yields

φ1ψ1

l
∼ ηψ1

l2
, (3.69)

and substituting into equation (3.66) yields(
νφ1

l3
+
φ2

1

l2

)
∼ ψ2

1

l2
∼ 1. (3.70)

Rearranging we find

ψ1 ∼ l ∼ √η
(

1 +
ν

η

)1/4

, (3.71)

φ1 ∼
√
η

(
1 +

ν

η

)−1/4

. (3.72)

Continuing for φ0 and ψ0, we find

ψ0 ∼ ψ1, (3.73)

E ∼ φ0 ∼ φ1. (3.74)
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Figure 3.1: Alignment of current sheet

Hence we recover the scalings described by Park et al. (1984).

We compare this scaling argument to the solution given by Craig and Litvi-

nenko (2012). They write the velocity and magnetic fields in the form

v = αP(x, y) + u(x)ŷ, (3.75)

B = βP(x, y) + b(x)ŷ, (3.76)

where P(x, y) = ∇× (ψ1y)ẑ is a large scale background field and u(x) = −φ′0

and b(x) = −ψ′0 are reconnection fields. In this case φ1 = ψ1. We argue that

if the Laplacian of the background field vanishes there will be no VR scale,

regardless of the form of the reconnection fields. Thus, the presence of a VR

scale is independent of any fields other than the background velocity field or

in other words the inflow velocity profile.

It is worth mentioning here that the system (3.63) and (3.64) naturally

closes even when accounting for the Hall effect (Craig and Watson, 2005).
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3.9 Description of a Purely Resistive Current

Sheet in Steady Magnetic Reconnection

Before we describe a visco-resistive current sheet, we should briefly review a

description of a purely resistive current sheet. Considering a long, thin current

sheet aligned on the y-axis (see Fig. 3.1) with width l, Biskamp (1986) used

a series expansion to describe the sheet near the origin. Approximating the

sheet as quasi-one-dimensional, Biskamp (1986) let ∂2
x ∼ l−2 � ∂2

y . Hence,

we approximate ∇2 ≈ ∂2
x. Equations (3.10) and (3.11), with viscosity ν set to

zero, become

− E + [ψ, φ] = η∂2
xψ, (3.77)

[∂2
xφ, φ] = [∂2

xψ, ψ]. (3.78)

Near the origin, we let the flux and stream functions can be represented by a

power series expansion of odd and even functions

ψ(x, y) = ψ0 (x) + ψ2 (x) y2/2! + ψ4 (x) y4/4! . . . , (3.79)

φ(x, y) = φ1 (x) y + φ3 (x) y3/3! + . . . , (3.80)

and chose the zeroth order current profile

J0(x) ≡ −∂xxψ0 =
E

η
sech2

(x
l

)
, (3.81)

which describes a Harris sheet. Note we use factorial denominators which

Biskamp (2000) did not use. Hence, for instance, our ψ2 is 1/(2!) the size of

Biskamp’s ψ2. Substituting the expansions (3.79)-(3.80) into (3.1)-(3.5) and

collecting the coefficients of like powers of y terms yields

− E + ψ′0φ1 = ηψ′′0 , (3.82)

φ1φ
′′′
1 − φ′1φ′′1 = ψ′′′0 ψ2 − ψ′0ψ′′2 , (3.83)

ψ′2φ1 + ψ′0φ3 − 2ψ2φ
′
1 = ηψ′′2 , (3.84)
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where the dash refers to differentiation with respect to x. From here Biskamp

(1986) calculated

ψ0 = −El
2

η
ln
(

cosh
(x
l

))
(3.85)

φ1 = −η
l

tanh
(x
l

)
, (3.86)

ψ2 =
η3

El4
tanh

(x
l

) [x
l
− tanh

(x
l

)]
. (3.87)

φ3 =
η4

E2l7

[
6η tanh3

(x
l

)
− 7η tanh

(x
l

)
+

3ηx

l
sech2

(x
l

)]
. (3.88)

Note there was a factor of two error in Biskamp’s expression for ψ2. From here

Jamitzky and Scholer (1995) found the fourth order flux term

ψ4 =
η7

l10E3

[
8− 3x2

l2
sech2

(x
l

)
− 4 tanh2

(x
l

)
+ 2 tanh4

(x
l

)
+

23x

l
tanh

(x
l

)
− 12x

l
tanh3

(x
l

)]
. (3.89)

3.10 Visco-Resistive Length Scale in Steady

Magnetic Reconnection

Now we extend Biskamp (1986)’s description of a purely resistive current sheet

near the origin to include viscous effects. This could be useful in terms of

numerical simulations or laboratory experiments that incorporate viscosity.

The calculation has one degree of freedom that manifests in the choice of

a zeroth order current profile. Hence, we perform this calculation for three

different zeroth order current profiles as prescribed by Biskamp (2000) and

find that two contain a VR length scale while the other does not, despite the

three zeroth order current profiles being qualitatively similar and having the

same limit near the origin. Finally, we compare flux pile-up models with our

series expansion solution and discuss the physical implications of our results.

Following Biskamp (1986), we assume a long, thin current sheet with thick-

ness l aligned along the y axis as pictured in Figure 3.1. This implies that,

near the y axis, ∂2
x ∼ l−2 � ∂2

y . Hence, we approximate ∇2 ≈ ∂2
x. Equations
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(3.10) and (3.11) become

− E + [ψ, φ] = η∂2
xψ, (3.90)

[∂2
xφ, φ]− ν∂2

x

(
∂2
xφ
)

= [∂2
xψ, ψ]. (3.91)

Finding an exact solution for a reconnecting current sheet, and hence an

exact VR length scale, that is valid everywhere is infeasible. However, if we

only consider a small length scale then we can use a series expansion tech-

nique which, to a sufficient order, is valid in the vicinity of the current sheet.

The series expansion method was first used to describe a 2D purely resistive

current sheet (Priest and Cowley, 1975). This was then refined to a quasi-

one dimensional series expansion by taking ∂x � ∂y and expanding only in

the y direction for a resistive current sheet (Biskamp, 1986; Sonnerup, 1988;

Jamitzky and Scholer, 1995) and a Hall current sheet (Litvinenko, 2009).

Near the origin, we again assume that the flux and stream functions can

be represented by the series expansion of odd and even functions (3.79)-(3.80),

and substitute into (3.1)-(3.5). Collecting the coefficients of like powers of y

terms yields

− E + ψ′0φ1 = ηψ′′0 , (3.92)

φ1φ
′′′
1 − φ′1φ′′1 − νφ

(4)
1 = (ψ′′′0 ψ2 − ψ′0ψ′′2) , (3.93)

ψ′2φ1 + ψ′0φ3 − 2ψ2φ
′
1 = ηψ′′2 , (3.94)

3 (φ′′′1 φ3 − φ′′3φ′1) + (φ′′′3 φ1 − φ′′1φ′3)− νφ(4)
3 =

(ψ′′′0 ψ4 − ψ′′4ψ′0) + 3 (ψ′′′2 ψ2 − ψ′′2ψ′2) , (3.95)

φ1ψ
′
4 + 6ψ′2φ3 + ψ′0φ5 − 4ψ2φ

′
3 − 4φ′1ψ4 = ηψ′′4 , (3.96)

where again the dash refers to differentiation with respect to x.

We must assume a profile for ψ′0 = −By(x, 0), the magnetic field profile

near the y axis, in order to start the expansion. First we consider a zeroth

order flux function that replicates flux-pile up solutions of the form (3.15):

ψ′0 = −El
η

daw
(x
l

)
. (3.97)
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This profile yields the higher order solutions

ψ2 =k2ψ0 (3.98)

ψ4 =k4ψ0 (3.99)

ψ6 =k6ψ0 (3.100)

... (3.101)

and

φ3 =k3φ1 (3.102)

φ5 =k5φ1 (3.103)

φ7 =k7φ1 (3.104)

... (3.105)

for arbitrary constants ki. Setting all higher order terms to zero recovers the

Sonnerup-Priest solution and thus kills our VR scale.

Alternatively, we follow previous studies (Biskamp, 1986; Jamitzky and

Scholer, 1995; Litvinenko, 2009) and choose the zeroth order function

ψ0 = −El
2

η
ln
(

cosh
(x
l

))
. (3.106)

This particular current sheet profile, which describes a Harris sheet, is used

here since it is one of the only functions for which it is possible to perform

the expansion in terms of elementary functions. Furthermore, it is similar

to a Gaussian function which was postulated to be a more accurate profile

(Biskamp, 2000), and which we use in Section VIII. Substituting equation

(3.106) into equation (3.92) yields

φ1 = −η
l

tanh x̃, (3.107)

where we let x̃ = x/l. Integrating equation (3.93) twice gives

ψ2 = −φ1φ
′
1

ψ′0
+ νψ′0

∫
φ′′′1
ψ′20

dx+ c2ψ
′
0

∫
1

ψ′20
dx, (3.108)

which yields

ψ2 =
η2

El4
[
(6ν − η) tanh2 x̃+ c2x̃ tanh x̃+ 2ν + η − c2

]
. (3.109)
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Here, the arbitrary constant c2 has been redefined after integration and we

have used the boundary condition ψ′2(0) = 0 to specify another integration

constant since By(0) = 0 at an X-point. Equation (3.94) shows that φ3 →∞

as x→ 0 unless

c2 = η − 2ν. (3.110)

Substituting this result into (3.109), we find

ψ2 =
η2

El4
[
(η − 2ν) x̃ tanh x̃+ (6ν − η) tanh2 x̃+ 4ν

]
. (3.111)

Setting ν = 0 recovers equation (3.87). To find φ3 we use equation (3.94). The

result is

φ3 =
η4

E2l7
[
6 (η − 6ν) tanh3 x̃ (3.112)

− (7η − 38ν) tanh x̃+ 3 (η − 2ν) x̃sech2x̃
]
. (3.113)

Setting ν = 0 recovers equation (3.88). Next, to find ψ4, we integrate equation

(3.95). The result is

ψ4 =
η5

l10E3
[ 8
(
η2 + ην − 58ν2

)
− 3 (η − 2ν)2 x̃2sech2x̃

− 4
(
η2 − 62ην + 408ν2

)
tanh2 x̃

+ 2 (η − 6ν) (7η − 66ν) tanh4 x̃

+
(
23η2 − 212ην + 460ν2

)
x̃ tanh x̃

− 12 (η − 2ν) (η − 6ν) x̃ tanh3 x̃ ] . (3.114)

Note that setting ν = 0 recovers equation (3.89). Substituting equations

(3.106), (3.111) and (3.114) into (3.79), and substituting (3.112) and (3.107)

into (3.80) yields the flux and stream functions up to fourth order. We use

these flux and stream functions to find the length scale of our current sheet.
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3.11 Description of a Visco-Resistive Current

Sheet

We want to find the length scale of a VR current sheet and quantify the role of

viscosity in magnetic reconnection. We obtain predictions for the reconnection

rate, the outflow speed and the thickness of the current sheet. We approximate

ψ(x, y) near the X-point by substituting the leading order terms of ψ0, ψ2 and

ψ4 into (3.79):

ψ ≈ −E
2η
x2 +

2νη2

El4
y2 +

E

12ηl2
x4 +

2νη2

El6
x2y2

+
η5

3l10E3

(
η2 + ην − 58ν2

)
y4. (3.115)

To find the thickness l from equation (3.92), we note that in our units we have

set the magnetic field to be measured in terms of some known inflow magnetic

field B0. Hence we can set max |By(x, 0)| = B0 ≡ 1 and hence we obtain the

scale

l =
η

E
. (3.116)

We substitute (3.116) into (3.115)

ψ ≈ −E
2η

(
x2 − 4νE2

η
y2 − E2

6η2
x4 − 4E4ν

η3
x2y2−

2E6

3η4

(
η2 + ην − 58ν2

)
y4

)
. (3.117)

This flux function describes an X-point at the origin and is plotted in

Fig. 3.2. In the limit ν → 0 the magnetic separatrix angle approaches zero,

which describes an osculatory solution.

In order to find the length scale and reconnection rate, we need to calculate

the current function

Jz(x, y) = −ψ′′0(x)− 1

2!
ψ′′2(x) y2 − 1

4!
ψ′′4(x) y4 + . . . (3.118)

We could insist that at the boundary of the current sheet the current drops

off to zero. Hence

Jz(0, L) = 0, (3.119)
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Figure 3.2: Magnetic field lines plotted for a visco-resistive current sheet:

equation (3.117) is plotted for η = 10−8, ν = 10−4. E is calculated from

equation (3.127) with L set to 1 without loss of generality. Note: l� 1 so the

actual aspect ratio is much greater than it appears in the figure.

for some known current sheet length L ∼ 1. Substituting our values for ψ′′0(0),

ψ′′2(0) and ψ′′4(0) we get

Jz(0, L) =
E

η

(
1− 4E4ν

η3
L2 −4E8 (η2 + 3ην − 74ν2)

3η6
L4

)
. (3.120)

However, if ν � η the current will always be positive and never drop off to

zero. Hence, the definition (3.119) would give us a complex length. Instead

we introduce the current density and compare our solution to a Syrovatskǐi

current sheet. It should be noted that Syrovatskǐi (1971)’s solution is for

ideal MHD, but nevertheless the definition that the current density becomes

negative beyond the boundary of the current sheet is particularly useful here.

The electric current per unit length is defined as

dI

dy
=

∫ ∞
−∞

Jz(x, y)dx, (3.121)

where

I =

∫ L

−L

dI

dy
dy (3.122)

is the total current and Jz is given by (3.118). Integrating Jz yields

dI

dy
= 2

[
1− E4

2η3
(η − 2ν) y2 − E8

24η6

(
11η2 − 116ην + 316ν2

)
y4

]
, (3.123)
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Figure 3.3: Electric current per unit length: equation (3.123) is plotted for

η = 10−8, ν = 10−4. E is calculated from equation (3.127) with L set to 1

without loss of generality.

which is plotted in Figure 3.3. We observe that the current density is relatively

even across the sheet and quickly drops off at the boundary of the current sheet

as expected. Imposing the boundary condition

I ′(L) = 0 (3.124)

produces the result

L2 =
4η3

E4 (η − 2ν + κ)
, (3.125)

where

κ =

[
1

3

(
25η2 − 244ην + 644ν2

)](1/2)

. (3.126)

Defining the current sheet length as L ≡ 1 in our units, we rearrange equation

(3.125) to obtain the reconnection rate

E =
√
η

(
(η − 2ν + κ)

4η

)−1/4

. (3.127)

We obtain the outflow speed vy by evaluating vy = −∂xφ(x, y) at the point

(x, y) = (0, L) and using the leading order term of equation (3.107) along with

(3.116) (Litvinenko, 2009):

vout =
L

l
E. (3.128)



48

Substituting our values for L and E yields

vout =

(
4η

η − 2ν + κ

)1/2

. (3.129)

Finally, we can substitute equation (3.127) into (3.116) to find

l =
√
η

(
(η − 2ν + κ)

4η

)1/4

. (3.130)

Equations (3.127), (3.129) and (3.130) are plotted in Figs. 3.4-3.6 respectively.

The curves in Figs. 3.4-3.6 closely resemble their asymptotic approximations

(3.188)-(3.193) for large ν/η. We would expect, based on the (Park et al.,

1984) scalings, the Sweet-Parker normalised reconnection rate E/
√
η and the

outflow velocity vout to be unity when ν = 0 and then monotonically decrease

as we increase the viscosity. Similarly, we would expect the Sweet-Parker

normalised length scale l/
√
η to monotonically increase as we increase ν/η.

However, for the scalings we have obtained, which are valid for all values of

ν, we observe an initial increase in E/
√
η and vout and an initial decrease in

l/
√
η as we increase the viscosity. Mathematically, the increasing l/

√
η can

be explained by the fourth order correction term κ (3.126) which reaches a

minimum at ν/η = 244/(2× 644) ≈ 0.189.

3.12 Gaussian current profile

We have adopted two different zeroth order current profiles, equations (3.97)

and (3.106) (pictured in Fig. 3.7), and have attained two different length scales

for a VR current sheet. The fascinating aspect of Fig. 3.7 is that even though

there is a small difference in boundary conditions between the two current

profiles we obtain two completely different length scales. Additionally, we

remark that Fig. 3.7 depicts back currents at the boundary of the diffusion

region for the Dawson profile (3.97), however this is not the cause of the varying

length scales, in fact it is the boundary conditions of the inflow velocity that

determine the presence of a VR length scale.
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Figure 3.4: The reconnection rate E, normalised by the Sweet-Parker recon-

nection rate
√
η, plotted against ν/η. The dashed line is the ν → ∞ limit

given by equation (3.193). Without loss of generality L is set as 1. The dotted

line depicts the maximum at ν ≈ 0.189η.
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Figure 3.5: The outflow velocity vout plotted against ν/η. The dashed line

is the ν → ∞ limit given by equation (3.192). The dotted line depicts the

maximum at ν ≈ 0.189η.
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Figure 3.6: The current sheet thickness l, normalised by the Sweet-Parker

current sheet thickness
√
η, plotted against ν/η. The dashed line is the ν →∞

limit given by equation (3.191). The dotted line depicts the maximum at

ν ≈ 0.189η.
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Figure 3.7: Zeroth order current profile as described by Biskamp (2000). The

solid line is the current profile that corresponds the flux function (3.97) and

the dashed line is the current profile associated with the flux function (3.106).
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This begs the need for a more general formulation for substituting zeroth

order current profiles and producing length scales. In particular, we want to

use a Gaussian function

J(x, 0) = ψ′′0(x) = −E
η

exp

[
−
(x
l

)2
]
, (3.131)

since it can be justified in terms of statistical thermodynamics (Biskamp, 2000).

However, calculating a fourth-order series expansion in terms of a Gaussian

function would prove intractable.

In place of the exact Gaussian profile (3.131), we approximate it by a 14th

order Taylor series

ψ0 = −El
η

(
x̃2

2
− x̃4

12
+
x̃6

60
+ · · ·+ x̃14

131040

)
. (3.132)

Furthermore, we approximate the functions ψn or φn by employing the follow-

ing scheme (Cowley, 1975; Priest and Cowley, 1975):

ψ0 =ψ00 + ψ02x
2 + ψ04x

4 + . . . , (3.133)

φ1 =φ11x+ φ13x
3 + . . . (3.134)

ψ2 =ψ20 + ψ22x
2 + ψ24x

4 + . . . , (3.135)

φ3 =φ31x+ φ33x
3 + . . . (3.136)

ψ4 =ψ40 + ψ42x
2 + ψ44x

4 + . . . . (3.137)

Substitution of equations (3.133)-(3.137) into equation (3.92) and collecting

the coefficients of like powers of x yields

ψ02 =− E

2η
, (3.138)

ψ02φ11 =6ηψ04, (3.139)

ψ02φ13 =15η ψ06 − 2ψ04φ11, (3.140)

ψ02φ15 =28η ψ08 − 3ψ06φ11 − 2ψ04φ13, (3.141)

ψ02φ17 =45ηψ010 − 4ψ08φ11 − 3ψ06φ13 − 2ψ04φ15, (3.142)

ψ02φ19 =66ηψ012 − 5ψ010φ11 − 4ψ08φ13 − 3ψ06φ15 − 2ψ04φ17, (3.143)

ψ02φ111 =91ηψ014 − 6ψ012φ11 − 5ψ010φ13

− 4ψ08φ15 − 3ψ06φ17 − 2ψ04φ19. (3.144)
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Substituting into equation (3.93) produces

ψ02ψ22 =30ν φ15 + 6ψ04ψ20, (3.145)

6ψ02ψ24 =− 10φ15φ11 + φ2
13 + 210ν φ17 + 30ψ06ψ20 + 4ψ04ψ22, (3.146)

10ψ02ψ26 =4φ13φ15 − 28φ11φ17 + 504ν φ19

56ψ08ψ20 + 18ψ06ψ22 − 4ψ04ψ24, (3.147)

14ψ02ψ28 =− 54φ11φ19 − 6φ13φ17 + 5φ2
15 + 990νφ111

+ 90ψ010ψ20 + 40ψ08ψ22 + 6ψ06ψ24 − 12ψ04ψ26. (3.148)

Similarly for (3.94):

−φ11ψ20 =η ψ22, (3.149)

ψ02φ31 =6η ψ24 + 3φ13ψ20, (3.150)

ψ02φ33 =15η ψ26 − ψ24φ11 + 2ψ22φ13 − 2ψ04φ31 + 5ψ20φ15, (3.151)

ψ02φ35 =28η ψ28 − 2ψ26φ11 + ψ24φ13 + 4ψ22φ15

− 3ψ06φ31 − 2ψ04φ33 + 7ψ20φ17. (3.152)

And finally, substituting into (3.95) and (3.96) gives

6ψ04ψ40 − ψ02ψ42 =− 3 (φ13φ31 − φ33φ11) + 30νφ35

+ 3
(
6ψ24ψ20 − ψ2

22

)
, (3.153)

−2ψ20φ31 − 2ψ40φ11 =ηψ42. (3.154)

From here we compute the current along the y axis as

Jz(0, y) = −2

(
ψ02 +

1

2!
ψ22y

2 +
1

4!
ψ42y

4 + . . .

)
. (3.155)

Solving equations (3.138)- (3.155) for the zeroth order profile (3.132) yields

Jz(0, y) =
E

η

(
1− E4ν

3η3
y2 +

E8k

9η6
y4

)
, (3.156)

where

k =
15855η2 − 6071ην + 93069ν2

9450
. (3.157)
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We cannot use the definition (3.124) here since our series does not converge

for large y. Instead, we use Jamitzky and Scholer (1995)’s definition that the

region of validity is our system size. That is to say the point where our series

no longer converges is defined as the current sheet length L. This is the point

where

1

4!
|ψ42| ≥

1

2!
|ψ22|. (3.158)

Adopting this definition, we find

E4 =
3η3ν

k
, (3.159)

and finally

E =
√
η

(
k

3ην

)−1/4

, (3.160)

and hence

l =
√
η

(
k

3ην

)1/4

. (3.161)

The flux function near the origin is computed as

ψ = −E
2η

(
x2 − νE2

3η
y2 − E2

6η2
x4 − νE4

3η3
x2y2

+
E6

170100η4

(
155855η2 − 5546ην + 1056669ν2

)
y4

)
(3.162)

as plotted in Fig. 3.8.

In the previous section we used two different zeroth order current profiles-

equations (3.97) and (3.106)- and found two different length scales- one with

a VR scale and the other not containing a VR scale. Our third zeroth order

current profile- the Gaussian profile (3.132)- does contain a VR scale. Hence,

we might suspect a VR scale to be present more generally. To this end, we

formulate a general method for finding whether or not a VR scale is present,

based on a zeroth order profile, in the next section.

3.13 Inflow velocity profile

The series expansion described in Section 3.9 has one degree of freedom which

we took to be the zeroth order current profile. This is primarily owing to
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Figure 3.8: Current sheet using the zeroth order current profile (3.131). We

have taken ν = 10−4, η = 10−8.

reasons of convenience as assuming a velocity profile in equation (3.92) neces-

sitates solving a first order differential equation in order to find the leading

order flux function ψ0. However, in equations (3.138)-(3.144) neither the flux

nor the stream function is more convenient than the other.

Profiles (3.97) and (3.106) are difficult to unify into a more general function.

Alternatively, we could use the inflow velocity vx(x, 0) = φ1 as our degree of

freedom. Consider the function

φ1(x) = − η

µl
tanh

(µx
l

)
. (3.163)

If we let µ = 1 then we get the profile (3.106) and the limit µ → 0 produces

the profile (3.97) as plotted in Fig. 3.9. Here we observe that µ acts as a

parameter that represents a boundary condition for the inflow velocity at the

edge of the diffusion region. Then

ψ22 =
4η2µ4ν

El6
, (3.164)

ψ42 =
η5µ4m

E3l12
, (3.165)
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Figure 3.9: The inflow velocity profile (3.163) normalised by E plotted for

different values of µ. Note the negative sign appears due to the velocity at

x = l pointing toward the origin.

where

m =
16

105
(175η2µ2 − 70η2 + 1148ηµ4ν

− 1029ηµ2ν + 196ην − 15640µ6ν2 + 10378µ4ν2

− 2804µ2ν2 + 296ν2). (3.166)

Employing equations (3.158) and (3.116) yields

E =
√
η

(
|m|

48ην

)−1/4

. (3.167)

For a small but non-zero µ we get

m = − 16

105
(70η2 − 196ην − 296ν2). (3.168)

Here µ represents the size of nonlinear terms in the inflow velocity and for

any small but finite µ we still get a VR scale. From equation (3.145) we can

conclude that if any fifth order terms are present in the leading order stream

function φ1 then we will attain a VR length scale. This leaves us with one

final particular case- a cubic inflow velocity profile. Hence we try the profile

φ1 = −η
l

(
x+ bx3

)
, (3.169)



56

where b ≥ −1 to ensure that vx(1, 0) < 0. Combining equations (3.139),

(3.145) and (3.149) produces

ψ20 = ψ22 = 0. (3.170)

Substituting (3.170) reduces equations (3.140)-(3.154) to

15η ψ06 =ψ02φ13 + 2ψ04φ11, (3.171)

28η ψ08 =2ψ04φ13 + 3ψ06φ11, (3.172)

45ηψ010 =3ψ06φ13 + 4ψ08φ11, (3.173)

66ηψ012 =4ψ08φ13 + 5ψ010φ11, (3.174)

91ηψ014 =5ψ010φ13 + 6ψ012φ11, (3.175)

6ψ02ψ24 =φ2
13, (3.176)

5ψ02ψ26 =− 2ψ04ψ24, (3.177)

7ψ02ψ28 =3ψ06ψ24 − 6ψ04ψ26, (3.178)

ψ02φ31 =6η ψ24, (3.179)

ψ02φ33 =15η ψ26 − ψ24φ11 − 2ψ04φ31, (3.180)

ψ02φ35 =28η ψ28 − 2ψ26φ11 + ψ24φ13 − 3ψ06φ31 − 2ψ04φ33, (3.181)

30νφ35 =6ψ04ψ40 − ψ02ψ42 + 3 (φ13φ31 − φ33φ11) (3.182)

ηψ42 =− 2ψ40φ11. (3.183)

We calculate the fourth order current profile as

Jz(0, y) = 2

(
E

2η
− 2b2E9p

3η6
y4

)
, (3.184)

where

p = [(2− 3b)η − (8− 3b)ν] . (3.185)

Equation (3.158) is trivially satisfied since ψ22 = 0. Instead we replace equa-

tion (3.158) with

1

4!
|ψ42| ≤ |ψ02|, (3.186)
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which could also be obtained from using the definition (3.119). Hence we

attain the reconnection rate

E =
√
η

(
4p

3η

)−1/4

. (3.187)

There exists a particular solution b = 8/3 for a cubic inflow velocity profile in

which we do not obtain a VR scale when we use a fourth order approximation

for the current. However, the lack of a VR scale here is owing to the current

only being calculated to fourth order. If we were to include higher order terms

the VR scale would inevitably appear. So for any nonlinear inflow velocity we

will obtain a VR scale regardless of how weakly nonlinear the inflow velocity

profile is. In other words, the Park et al. scale is the fundamental length

scale of a VR current sheet but there exist particular solutions in which we

get separate viscous and resistive current layers.

3.14 Discussion

In this chapter, we have searched for the length scale of a reconnecting VR

current sheet. To this end we have reviewed a dimensional argument and

flux-pile up solutions. Furthermore, we have used a series expansion method

to describe in detail a VR current sheet near the origin that is valid for any

viscosity. We have calculated the series expansion for three different zeroth

order current profiles as prescribed by Biskamp (2000) and for a more general

inflow velocity profile.

We conclude that the presence of a VR length scale in reconnection is

determined by the form of the inflow velocity vx(x, 0). If nonlinear terms

are present in the inflow velocity profile a VR length scale will be present

regardless of how small these nonlinear terms are. Thus we postulate that the

Park et al. (1984) scale (3.59) is a fundamental length scale that is only invalid

for a limited range of particular inflow velocity profiles.

Since our general description of the inflow and outflow speeds and current

sheet thickness is applicable for any viscosity, we can compare the limiting
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cases of ν → 0 and ν � η to previous studies. In the case ν → 0 we recover

the Sweet-Parker scalings

l ∼ η1/2, (3.188)

vout ∼ 1, (3.189)

E ∼ η1/2. (3.190)

In the case ν � η we recover the previous scaling arguments for viscosity

dominant reconnection (Park et al., 1984; Biskamp, 2000)

l ∼ (ην)1/4 , (3.191)

vout ∼
(
ν

η

)−1/2

, (3.192)

E ∼ η1/2

(
ν

η

)−1/4

. (3.193)

Some vigilance is required in attempting to generalise our solution, in par-

ticular to incorporate Hall or time-dependent effects. We note that the os-

culation of field lines in the inviscid limit was shown not to be a property of

time-dependent magnetic merging (Heerikhuisen et al., 2000).

Additionally, we remark that our series solution only represents the inner

region of a current sheet. Painting a full picture requires an asymptotic anal-

ysis. The outer region solution is independent of both resistivity and viscosity

and accordingly we can refer to Jamitzky and Scholer (1995) for a typical outer

region solution.

Finally, we compare our investigation to a previous study. Uzdensky and

Kulsrud (1998) use the zeroth order function

By(0, y) =
√

1− y2, (3.194)

and find singularities in the stream function. It is clear to see from equations

(3.138)-(3.144) that the choice of either a zeroth order flux function or a zeroth

order stream function is arbitrary. In other words, the choice of flux function

dictates the form of the stream function. Hence, at least in the way we have

set up our calculation, we can avoid the singularities in the stream function
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described by Uzdensky and Kulsrud (1998) by simply choosing a non-singular

stream function.



Chapter 4

Current Sheet Formation in a

Weakly Collisional Plasma

4.1 Introduction

Current sheet formation at a magnetic neutral line has been studied in stan-

dard magnetohydrodynamics (MHD) and Hall MHD. Current sheets can be

modelled as singularities in the current density. Exact self-similar MHD solu-

tions have been found that exhibit both exponential behaviour (e.g., Chapman

and Kendall, 1963; Uberoi, 1963) and finite-time collapse to a singularity (e.g.,

Shivamoggi, 1986). Numerical simulations (Sulem et al., 1985; Grauer and

Marliani, 1998) and analytical arguments (Klapper, 1998) show that ideal in-

compressible MHD solutions grow exponentially unless a singularity is driven

by an imposed pressure. More recently, analytical solutions that include the

Hall term in the generalised Ohm’s law have been found, yet the role of the Hall

term in the singularity formation remains a subject of debate (e.g., Litvinenko,

2007; Shivamoggi, 2011).

Magnetic reconnection rates, predicted by traditional resistive MHD mod-

els (Parker, 1957; Sweet, 1958) are too slow to explain reconnection in labo-

ratory and astrophysical plasmas (Bhattacharjee, 2004; Zweibel and Yamada,

2009). The Hall effect is believed to play a key role in fast magnetic reconnec-



61

tion in weakly collisional plasmas (Shay et al., 1999). Numerical simulations

(e.g., Birn et al., 2001, 2005; Shay et al., 2001; Drake et al., 2008) demon-

strated that including the Hall terms can speed up reconnection. However,

this is only possible by the thinning of the current sheet. Several recent scal-

ing models attempted to quantify the dependence of steady reconnection on

the Hall effect (Malyshkin, 2008; Uzdensky, 2009; Simakov and Chacón, 2009).

By contrast, the value of the singularity formation models is that they pro-

vide one of the few opportunities to describe the current sheet formation using

exact analytical solutions in Hall MHD (see also Craig and Watson, 2005).

In this chapter we investigate a self-similar solution for current sheet forma-

tion in Hall MHD. We generalise previous studies by considering a general set

of initial conditions and we derive a criterion for the formation of a finite-time

singularity. The new solution reduces to the exponentially evolving MHD

solution upon setting the Hall term to zero. We also discuss an alternative

approach to the singularity formation in Hall MHD proposed by Shivamoggi

(2011). Finally, we generalise our new solution to incorporate the resistive,

viscous and electron inertia terms in Ohm’s law and the momentum equation.
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4.2 Generalised Ohm’s Law and MHD equa-

tions

In the incompressible regime, the dimensionless MHD equations (2.7)-(2.12)

reduce to

E + v ×B = ηJ + di(J×B−∇pe)

+ d2
e[∂tJ + (v · ∇)J + (J · ∇)v],

(4.1)

∂tv + (v · ∇)v = −∇p+ J×B + ν∇2v, (4.2)

∇ · v = 0, (4.3)

∇ ·B = 0, (4.4)

J = ∇×B, (4.5)

∇× E = −∂tB. (4.6)

The resistive term ηJ is much greater than the Hall term di(J×B) in the

solar corona. However, the Hall term needs to be considered if large magnetic

gradients are present. To estimate the value of di at which the Hall term

becomes significant during reconnection we let |ηJ| ∼ di|J×B|. We note that

reconnection implies a large gradient in the planar magnetic field, whereas

the out-of-plane ẑ-component of the magnetic field changes relatively slowly.

Using (4.5), we estimate that Jplanar ∼ 1 and so |Jplanar ×Bplanar| ' Bplanar.

We have Jz ∼ Bplanar/l where l is the current sheet thickness and so Ez ∼

ηBplanar/l ∼ diBplanar. A typical Sweet-Parker length scale is l ∼ η1/2, which

implies that the Hall effect becomes significant roughly when d2
i & η (e.g.,

Craig and Litvinenko, 2008, and references therein).

In ideal Hall MHD, we set de = ν = η = 0. So Ohm’s law (4.1) and the

momentum equation (4.2) are approximated by

E + v ×B = di(J×B−∇pe), (4.7)

∂tv + (v · ∇)v = −∇p+ J×B. (4.8)

We assume a 2.5D model, in which all quantities are considered in three

dimensions but there is no dependence on the z co-ordinate (∂z = 0). The
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incompressibility equation (4.3) then dictates that

v(x, y, t) = ∇φ× ẑ +W ẑ. (4.9)

Similarly, to satisfy (4.4), we use the flux function ψ to represent the magnetic

field:

B(x, y, t) = ∇ψ × ẑ + Z ẑ. (4.10)

Furthermore, we take the curl of (4.7) and (4.8). Taking the ẑ components of

(4.7) and (4.8) and their curls, yields the following system (see also Craig and

Watson, 2005):

∂tψ + [ψ, φ] = di[ψ,Z], (4.11)

∂tZ + [Z, φ] = [W,ψ] + di[∇2ψ, ψ], (4.12)

∂tW + [W,φ] = [Z, ψ], (4.13)

∂t(∇2φ) + [∇2φ, φ] = [∇2ψ, ψ], (4.14)

where the Poisson bracket notation is typified by

[ψ, φ] = ∂xψ∂yφ− ∂yψ∂xφ.

4.3 Self-Similar Solutions

We solve the ideal Hall MHD equations (4.11)-(4.14) via similarity reduction.

The self-similar solutions we derive generalise those of standard MHD. Origi-

nally, Chapman and Kendall (1963, 1966) obtained a solution for the collapse

of a magnetic X-point to a current sheet in an incompressible, infinitely con-

ducting plasma in 2D (see also Sulem et al., 1985). A key feature of the solution

is an exponential growth of the X-point magnetic field. Uberoi (1963, 1966)

noted the validity of the solution for finite conductivity, whereas Imshennik

and Syrovatskǐi (1967) obtained a solution for a compressible plasma. For an

incompressible plasma, Shivamoggi (1986) presented a solution that predicts

a finite-time collapse to the current sheet. However, numerical simulations by



64

Sulem et al. (1985) and Grauer and Marliani (1998) have shown an exponen-

tial flattening of the 2D X-point in ideal incompressible MHD. Klapper (1998)

proved a general result that a finite-time collapse to a current sheet cannot oc-

cur in planar incompressible MHD flows unless a singularity is pressure-driven

(e.g., Shivamoggi, 1986). Hence we derive a solution in Hall MHD which is

consistent with exponential evolution in the MHD limit di = 0.

To reduce the system (4.11)-(4.14) to a system of ordinary differential equa-

tions, we seek the flux function ψ and the stream function φ as in 2D MHD

solutions:

ψ = α(t)x2 − β(t)y2, (4.15)

φ = −γ(t)xy, (4.16)

which describe a hyperbolic planar magnetic field, driven by a stagnation-point

flow. Similarly, for the axial velocity field W and the axial magnetic field Z

we assume

W = f(t)x2 + g(t)y2, (4.17)

Z = h(t)xy, (4.18)

where the functional form of the axial magnetic field Z corresponds to a

quadrupolar structure in Hall magnetic reconnection (Sonnerup, 1979; Wang

et al., 2000). On substituting (4.15)-(4.18) into (4.11)-(4.14) we get

α̇− 2α(γ + dih) = 0, (4.19)

β̇ + 2β(γ + dih) = 0, (4.20)

ḟ − 2γf + 2αh = 0, (4.21)

ġ + 2γg + 2βh = 0, (4.22)

ḣ+ 4αg + 4βf = 0, (4.23)

where the overdot notation represents differentiation with respect to dimen-
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sionless time. These equations are integrated to yield

αβ = const, (4.24)

α + dif = const exp(2Γ), (4.25)

β − dig = const exp(−2Γ), (4.26)

h2 − 4fg = const, (4.27)

where Γ =
∫ t

0
γ(t′) dt′. These equations reduce to those derived by Litvinenko

(2007) in the case γ = const.

Once the solution is determined, we can use the momentum equation to

find the pressure. We calculate

∂tv = γ̇(−x, y, 0),

(v · ∇)v = γ2(x, y, 0),

J×B = [−h2xy2 − 4αx(α− β)]x̂ + [−h2x2y + 4βy(α− β)]ŷ,

and substitute into the momentum equation (2.21) to get

∂xp = −h2xy2 − 4αx(α− β) + γ2x− γ̇x,

∂yp = −h2x2y + 4βy(α− β)− γ2y − γ̇y.

Integration yields the pressure profile

p(x, y, t) = −1

2
h2x2y2+

1

2

[
γ2 − γ̇ − 4α(α− β)

]
x2+

1

2

[
−γ2 − γ̇ + 4β(α− β)

]
y2.

(4.28)

The 2D MHD result is recovered by setting h(t) = 0.

4.4 Collapse to a Current Sheet in Hall MHD

For a general set of initial conditions,

α(0) = α0, β(0) = β0, γ(0) = γ0,

f(0) = f0, g(0) = g0, h(0) = h0,
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we specify the integration constants in the system (4.24)-(4.27):

αβ = α0β0, (4.29)

α + dif = (α0 + dif0)exp(2Γ), (4.30)

β − dig = (β0 − dig0)exp(−2Γ), (4.31)

h2 − 4fg = h2
0 − 4f0g0. (4.32)

Now we obtain an equation for h(t) by differentiating (4.23):

ḧ+ 4(α̇g + αġ + β̇f + βḟ) = 0.

On using (4.19)-(4.23), after some algebra, this simplifies to

ḧ+ 8h[di(αg − βf)− 2α0β0] = 0.

To express (αg − βf) in terms of h, we note that (4.30) and (4.31) yield

(α + dif)(β − dig) = (α0 + dif0)(β0 − dig0).

On expanding the left-hand side and using (4.29), we get

di(αg − βf) = α0β0 − d2
i fg − (α0 + dif0)(β0 − dig0).

Next we use (4.32) to eliminate fg. The result is

ḧ− 2d2
ih(h2 − h2

0 + 4f0g0) + 8h[di(α0g0 − β0f0) + d2
i f0g0 − 2α0β0] = 0,

or

ḧ− 2d2
ih

3 − a2h = 0, (4.33)

where a2 is defined as

a2 = −2[4di(α0g0 − β0f0)− 8α0β0 + d2
ih

2
0]. (4.34)

Note that the equation is valid for any γ(t).

A finite-time collapse to a current sheet occurs if a finite-time singularity

is present in the solution, that is if h(t)→∞ as t→ ts. We note, if h(t)→∞

then either f(t) or g(t) must be singular as t→ ts by (4.32). Accordingly, either
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Figure 4.1: U(h) vs h.

α(t) or β(t) must also be singular as t→ ts by (4.30) and (4.31). Finally, α(t)

and β(t), and consequently f(t) and g(t), cannot both be singular by (4.29).

We obtain a singularity criterion by using a mechanical analogy. We rewrite

(4.33) as

ḧ+ U ′(h) = 0, (4.35)

where U(h) is analogous to potential energy in mechanics (Figure 4.1). Hence

we can view the solution to (4.33) as particle motion in this potential. Inte-

gration of (4.35) yields an analogue of energy conservation:

1

2
ḣ2 = −U(h), (4.36)

where

U(h) = −1

2
(d2
ih

4 + a2h2) +
1

2
(d2
ih

4
0 + a2h2

0)− 8(α0g0 + β0f0)2. (4.37)

The quartic function U(h) tends to −∞ for large h. By setting U ′(hmax) = 0,

we find

h2
max = − a2

2d2
i

. (4.38)

The solution h(t) is stable if the following three conditions are satisfied.

First, U(h) has a local minimum. Second, h(t) stays between the local maxima
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±hmax of U(h). In other words, h(t) does not escape the local potential well.

Third, at t = 0, h(t) = h0 lies between the maxima.

Near the origin U(h) ≈ −a2h2/2. To satisfy the first condition we must

have

a2 < 0. (4.39)

To satisfy the second condition we require that ḣ ≤ 0 at the maxima, or

equivalently that U(hmax) ≥ 0. Consequently

−1

2
(d2
ih

4
max + a2h2

max) +
1

2
(d2
ih

4
0 + a2h2

0)− 8(α0g0 + β0f0)2 ≥ 0.

On substituting hmax from (4.38), we get

a4

8d2
i

+
1

2
(d2
ih

4
0 + a2h2

0)− 8(α0g0 + β0f0)2 ≥ 0.

On substituting a2 from (4.34) and simplifying, we have

α0β0(α0 + dif0)(β0 − dig0) ≥ 0. (4.40)

The third condition means that

h2
0 ≤ h2

max,

and so

di(α0g0 − β0f0)− 2α0β0 ≥ 0. (4.41)

Equation (4.41) is in fact a stronger condition than (4.39). So we only have the

last two conditions on the initial values of α, β, f and g for the solution h(t)

to be stable. Therefore, our self-similar solution will not contain a finite-time

singularity if the initial conditions α0, β0, f0 and g0 are such that equations

(4.40) and (4.41) are satisfied. Significantly, these conditions do not contain

γ(t) and h0. If either (4.40) or (4.41) are not satisfied, the solution develops

a singularity, and so, in sharp contrast to the exponential collapse in MHD,

the collapse to a current sheet can occur in a finite time in Hall MHD. For
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example, equation (4.41) is not satisfied for the particular case considered by

Litvinenko (2007) (α0 = β0, γ0 = 0.5, f0 = g0 = 0).

Equation (4.33) can be solved in terms of Jacobi elliptic functions. How-

ever, these solutions are difficult to work with, so we approximate the collapse

solution in terms of elementary functions, assuming a2 > 0. Near the singular-

ity, we let each variable be dependent on a power of τ = (ts−t), where ts is the

singularity time, then let τ → 0. This requires that Γ(t) → Γs =
∫ ts

0
γ(t′) dt′,

where we assume that the integral converges. It is reasonable to assume that

γ(t) is non-singular because γ(t) represents the driving flow. Due to the hy-

perbolic shape of the flow, either α → ∞, β → 0 or α → 0, β → ∞. For

large h, ḧ ≈ 2d2
ih

3, so h is proportional to ±τ−1. We substitute dih = τ−1

into (4.19), (4.20), (4.31) and (4.32) with τ → 0 and Γ→ Γs and balance the

leading-order terms. The resulting scalings are

α ≈ 1

4(β0 − dig0)
exp(2Γs) τ

−2, (4.42)

β ≈ 4α0β0(β0 − dig0) exp(−2Γs) τ
2, (4.43)

dif ≈
−1

4(β0 − dig0)
exp(2Γs) τ

−2, (4.44)

dig ≈ −(β0 − dig0) exp(−2Γs), (4.45)

dih ≈ τ−1, (4.46)

or

α ≈ 4α0β0(α0 + dif0) exp(2Γs) τ
2, (4.47)

β ≈ 1

4(α0 + dif0)
exp(−2Γs) τ

−2, (4.48)

dif ≈ (α0 + dif0) exp(2Γs), (4.49)

dig ≈
1

4(α0 + dif0)
exp(−2Γs) τ

−2, (4.50)

dih ≈ −τ−1. (4.51)

Next, we use asymptotic analysis to determine the singularity time ts. For

small h, h3 � h, and so

ḧ ≈ a2h.
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The general solution is

h(t) ≈ c1cosh(at) + c0sinh(at).

Based on initial conditions we choose c1 = h0 and c0 = ḣ0/a, where ḣ0 =

−4(α0g0 + β0f0), so that

h(t) ≈ h0cosh(at) +
ḣ0

a
sinh(at) (4.52)

for small time. For large t we use equations (4.36) and (4.37):

ḣ2 = d2
ih

4 + a2h2 + const.

Near the singularity, h→∞, and so the integration constant can be neglected:

ḣ ≈ h(d2
ih

2 + a2)
1
2 .

Integrating this equation gives

h(t) ≈ 2a2kexp(at)

1− (diak)2exp(2at)
, (4.53)

where k is an integration constant.

We use (4.52) and (4.53) to find an intermediate asymptotic solution for

all times. Letting t→∞ in (4.52) and t→ 0 in (4.53) and equating them will

yield an equation for k. Equation (4.52) becomes

h(t) ≈

(
h0

2
+
ḣ0

2a

)
exp(at),

and (4.53) becomes

h(t) ≈ 2a2k

1− (diak)2
exp(at).

Consequently, k is defined by

2a2k

1− (diak)2
=
h0

2
+
ḣ0

2a
.

On solving the resulting quadratic equation(
h0 +

ḣ0

a

)
(dia)2 + (4a2)

1

k
−

(
h0 +

ḣ0

a

)
1

k2
= 0,
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and assuming
(
h0 + ḣ0/a

)
(dia)2 � 1, we obtain

k =
1

4a2

(
h0 +

ḣ0

a

)
. (4.54)

Substituting (4.54) into (4.53), we find

h(t) ≈

(
h0

2
+
ḣ0

2a

)
exp(at)

1− d2
i

16a2

(
h0 +

ḣ0

a

)2

exp(2at)

−1

.

Comparing this with (4.52) we have the intermediate asymptotic solution

h(t) ≈

(
h0cosh(at) +

ḣ0

a
sinh(at)

)

×

1− d2
i

16a2

(
h0 +

ḣ0

a

)2

exp(2at)

−1

.

(4.55)

Therefore the singularity time ts in terms of the initial values is

ts =
1

2a
ln

16a2

d2
i

(
h0 +

ḣ0

a

)−2
 . (4.56)

When we substitute a = 4 and ḣ0 = 0 we recover the case considered by

Litvinenko (2007).

We illustrate the criteria (4.40) and (4.41) by plotting the numerical solu-

tions of the system (4.19)-(4.23) with varied initial conditions (see Figs. 4.2-

4.6). There are six variables in our system but only five equations, so we have

to make an assumption for one of the variables in order to solve the system.

We choose γ(t) = const for consistency with previous studies (e.g., Sulem

et al., 1985; Grauer and Marliani, 1998; Litvinenko, 2007). Specifically, we

choose initial conditions α0 = β0 = 1, γ0 = 0.5 and vary f0, g0 and h0. Equa-

tion (4.55) predicts that h → ∞ when (h0 + ḣ0/a) > 0, and h → −∞ when

(h0 + ḣ0/a) < 0. Figure 4.2 shows a nonsingular solution, whereas Figs. 4.3-

4.6 show singular solutions when one or both conditions (4.40)-(4.41) are not

satisfied. The numerical results also show that the accuracy of the predicted

value of ts increases as a2 increases.
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Figure 4.2: Plots of α, β and h for the initial conditions α0 = β0 = 1, γ0 =

0.5, dif0 = −2, dig0 = 2 and dih0 = 10−4. These initial conditions satisfy the

criteria (4.40) and (4.41), hence no finite-time singularity is present, and h(t)

oscillates about h = 0.
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Figure 4.3: Plots of α, β and h for the initial conditions α0 = β0 = 1, γ0 =

0.5, dif0 = −2, dig0 = −2 and dih0 = 10−4 so a = 4 and diḣ0 = 16. Equation

(4.55) predicts h→∞ because (h0 + ḣ0/a) > 0. Equation (4.56) predicts the

singularity time ts = 0.347.
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Figure 4.4: Plots of α, β and h for the initial conditions α0 = β0 = 1, γ0 =

0.5, dif0 = 2, dig0 = 2 and dih0 = 10−4 so a = 4 and diḣ0 = −16. Equation

(4.55) predicts h → −∞ because (h0 + ḣ0/a) < 0. Equation (4.56) predicts

the singularity time ts = 0.347.
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Figure 4.5: Plots of α, β and h for the initial conditions α0 = β0 = 1, γ0 =

0.5, dif0 = 2, dig0 = −2 and dih0 = 10−4 so a = 4
√

3 and diḣ0 = 0. Equation

(4.55) predicts h→∞ because (h0 + ḣ0/a) > 0. Equation (4.56) predicts the

singularity time ts = 1.809.
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Figure 4.6: Plots of α, β and h for the initial conditions α0 = β0 = 1, γ0 =

0.5, dif0 = 2, dig0 = −2 and dih0 = −10−4 so a = 4
√

3 and diḣ0 = 0. Equation

(4.55) predicts h → −∞ because (h0 + ḣ0/a) < 0. Equation (4.56) predicts

the singularity time ts = 1.809.
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4.5 An Alternative Reduction

In the previous section we derived a criterion for h(t) to develop a singularity,

and we derived an asymptotic solution to the system (4.19)-(4.23), assuming

that γ(t) remains non-singular. Now we allow the possibility for γ(t) to be

singular, which would imply an infinite flow speed. Note that the choice of γ

that is singular appears to contradict previous numerical simulations in ideal

MHD (e.g., Sulem et al., 1985; Grauer and Marliani, 1998). Since we have six

variables and only five equations (4.19)-(4.23), an equation for γ(t) is needed.

Shivamoggi (2011) assumes that the pressure is defined by

p(x, y, t) = −1

2
h2x2y2 + µ(t)(x2 + y2). (4.57)

Matching this pressure profile to our general equation for the pressure (4.28)

gives

µ(t) = −4α(α− β) + γ2 − γ̇ = 4β(α− β)− γ2 − γ̇.

Rearranging gives an equation for γ(t):

γ̇ = 2(α2 − β2). (4.58)

Shivamoggi (2011) further assumes

α(t) = −dif(t), β(t) = dig(t).

These assumptions modify the set of equations (4.19)-(4.23) to

α̇− 2α(γ + dih) = 0, (4.59)

β̇ + 2β(γ + dih) = 0, (4.60)

γ̇ = 2(α2 − β2), (4.61)

dif = −α, (4.62)

dig = β, (4.63)

h = h0 = const. (4.64)

This system satisfies the conditions (4.40) and (4.41) for h to be non-singular,

however a singularity in γ(t) may lead to a singularity in either α(t) or β(t). We
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find an equation for γ(t) in terms of initial conditions, similar to our treatment

of h(t). Differentiating (4.61) and substituting (4.59) and (4.60) yields

γ̈ = 8(γ + dih0)(α2 + β2). (4.65)

Differentiating again gives

...
γ = 8γ̇(α2 + β2) + 32(γ + dih0)2(α2 − β2). (4.66)

Rearranging (4.61) and (4.65) and substituting into (4.66) yields

...
γ(γ + dih0) = γ̇γ̈ + 16γ̇(γ + dih0)3. (4.67)

Integration yields

γ̈(γ + dih0) = γ̇2 + 4(γ + dih0)4 − c, (4.68)

where we integrated
...
γγ by parts. Here the integration constant is

c = 4(γ0 + dih0 + α0 + β0)(γ0 + dih0 + α0 − β0)

× (γ0 + dih0 − α0 + β0)(γ0 + dih0 − α0 − β0).
(4.69)

This reduction was previously shown to exhibit singularities in ideal MHD

(Shivamoggi, 1986), that is when dih(t) = 0. Shivamoggi (2011) argues that

the Hall term will quench the singularity, because the system has a steady

solution α = α0, β = β0, γ = −dih0 if α0 = β0 and h0 6= 0 (see also Núñez

et al., 2008; Shivamoggi, 2009). It is worth noting, however, that other choices

of the initial value γ0 6= −dih0 will still lead to a finite-time singularity. We

demonstrate this by solving equation (4.68). Near the singularity, we neglect

the integration constant and let γ(t) be dependent on a power of (t− t0):

γ + dih0 = A(t− t0)q + . . . (4.70)

Matching the leading-order terms yields the nonsteady solution

γ ≈ ± 1

2(t− t0)
− dih0, (4.71)

which implies a singularity at t = t0 unless γ0 = −dih0 (which implies t0 →∞).

This singularity is illustrated by a numerical solution in Figure 4.7.
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Figure 4.7: γ(t) from the numerical solution of the system of equations (4.59)-

(4.61). The initial conditions are α0 = β0 = 1, γ0 = 0.5 and dih0 = 1.

To sum up, Shivamoggi (2011) argues that the addition of the Hall term

quenches the singularity in γ(t) because the initial condition γ0 = −dih0 leads

to a steady solution if the pressure profile is given by (4.57). However, we

show that another choice of γ0 would lead to the same singularity as in ideal

MHD. This is why we believe Shivamoggi’s argument to be of limited validity.

4.6 Generalisations

We generalise the results of the previous section to include the electron inertia,

resistivity and viscosity. The generalised system is given by equations (4.1)-

(4.6). We analyse the generalised system as we did the ideal Hall MHD system.

Taking the ẑ component of (4.1) and (4.2) and their curls yields the following

system:

∂tψ + [ψ, φ] = η∇2ψ + di[ψ,Z] + d2
e(∂t∇2ψ + [∇2ψ, φ] + [Z,W ]), (4.72)

∂tZ + [Z, φ] = η∇2Z + [W,ψ] + di[∇2ψ, ψ]

+ d2
e(∂t∇2Z + [∇2Z, φ] + [∇2φ, Z]),

(4.73)

∂tW + [W,φ] = [Z, ψ] + ν∇2W, (4.74)

∂t(∇2φ) + [∇2φ, φ] = [∇2ψ, ψ] + ν∇4φ. (4.75)
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We modify our similarity reduction so that the viscous and resistive terms can-

cel when we perform the substitution. Uberoi (1963) noted that the resistivity

can be accounted for by adding a function of time only to ψ. Significantly,

this does not change the magnetic field B. Similarly, we also incorporate the

viscous and the ∂t∇2ψ terms:

ψ = α(t)x2 − β(t)y2 + 2η
∫

(α− β) dt+ 2d2
e(α− β), (4.76)

φ = −γ(t)xy, (4.77)

W = f(t)x2 + g(t)y2 + 2ν
∫

(f + g) dt, (4.78)

Z = h(t)xy. (4.79)

This yields the generalised system

α̇− 2α(γ + dih) + 2d2
efh = 0, (4.80)

β̇ + 2β(γ + dih) + 2d2
egh = 0, (4.81)

ḟ − 2γf + 2αh = 0, (4.82)

ġ + 2γg + 2βh = 0, (4.83)

ḣ+ 4αg + 4βf = 0. (4.84)

The integrals that generalise equations (4.29) and (4.32) are

4αβ = 4α0β0 + d2
e(h

2 − h2
0), (4.85)

4fg = 4f0g0 + (h2 − h2
0). (4.86)

Equations (4.30) and (4.31) are harder to generalise. We note, however, that

(α + dif)(β − dig) = (α0 + dif0)(β0 − dig0),

dt [(α + dif)(β − dig)] = 0.

in Hall MHD. Now if de 6= 0, we have

dt(α + dif)(β − dig) = (α̇ + diḟ)(β − dig) + (α + dif)(β̇ − diġ)

= (−2d2
efh)(β − dig) + (α + dif)(−2d2

egh)

=
1

2
d2
ehḣ,
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and so the generalised integral is

4(α + dif)(β − dig) = 4(α0 + dif0)(β0 − dig0) + d2
e(h

2 − h2
0). (4.87)

Again, we derive equation for h in order to investigate the collapse to a current

sheet. We have as before

ḧ+ 4(α̇g + αġ + β̇f + βḟ) = 0,

which can be written as

ḧ+ 8h[di(αg − βf)− 2αβ − 2d2
efg] = 0. (4.88)

To find an expression for di(αg−βf) we use the property (4.87). Rearranging

terms yields

−di(αg − βf) = (α0 + dif0)(β0 − dig0)− α0β0 + d2
i fg.

We also use equations (4.85) and (4.86). Substituting these into (4.88) yields:

ḧ− 8h[(α0 + dif0)(β0 − dig0) + (d2
i + 4d2

e)fg + α0β0 − 2d2
ef0g0] = 0,

which simplifies to

ḧ− 2(d2
i + 4d2

e)h
3 + [8d2

e(h
2
0 − 2f0g0)− a2]h = 0. (4.89)

Note equation (4.89) was erroneously published as (6.19) in Litvinenko and

McMahon (2015b) with the term 4d2
e(h

2
0 − 2f0g0) instead of 8d2

e(h
2
0 − 2f0g0).

This error was corrected by Janda (2018). This equation generalises the Hall

MHD result (4.33). The singularity is driven by the nonlinear term, which is

proportional to d2
i + 4d2

e. Because d2
e/d

2
i = me/mi � 1, we conclude that elec-

tron inertia is unlikely to modify the X-point collapse in a significant manner,

unless an initial perturbation is already localised on the electron scale ∼ de.

4.7 Further Research- Exact Solutions

4.7.1 Weierstrass Elliptic Function

We used an asymptotic analysis on equation (4.33) to obtain the approximate

solution (4.55) and the singularity time (4.56). However, it is possible to find
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an exact solution for (4.33) or the more general (4.89). Hence, Janda (2018)

multiplied equation (4.89) by ḣ and integrated to obtain

ḣ2 − bh4 + 2ch2 = 2E0, (4.90)

where

a =
√

2[8α0β0 − 4di(α0g0 − β0f0)− d2
ih

2
0], (4.91)

b =d2
i + 4d2

e, (4.92)

c =4d2
e(h

2
0 − 2f0g0)− a2

2
, (4.93)

E0 =8 (α0g0 + β0f0)2 − bh4
0

2
+ ch2

0. (4.94)

Note Janda (2018) originally published equation (4.94) with the a sign error

corresponding to

E0 = −8 (α0g0 + β0f0)2 − bh4
0

2
+ ch2

0, (4.95)

an error that was noticed by Brizard (2019) and fixed in Janda (2019). In doing

so, Brizard (2019) asserts that E0 is the energy of the system and thus should

be conserved. It should be pointed out that E0 is not a physical energy but

an analogue of energy (Janda, 2019). Nevertheless, Janda (2018) introduces

the rescaling variable

q(t) =
√
d2
i + 4d2

e h(t), (4.96)

which transforms (4.90) to

q̇2 − q4 + 2cq2 =
(
d2
i + 4d2

e

)
E0, (4.97)

In order to complete the square we let

c0 =
√
c2 − (d2

i + 4d2
e)E0, (4.98)

which works out to be (Janda, 2019)

c0 = 4

√
[2α0β0 − di (α0g0 − β0f0) + 2d2

ef0g0]2 − (d2
i + 4d2

e) (α0g0 + β0f0)2,

(4.99)
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so that (4.97) becomes

q̇2 −
(
q2 − c

)2
= c2

0. (4.100)

Janda (2018) introduces the variable

q(t) = b1

(
1 +

b2

w(t) + b3

)
, (4.101)

with unknown constants b1, b2 and b3, to reduce (4.97) to

b2
1b

2
2ẇ

2 − b2
1

[
b2

1 (w + b2 + b3)2 − c (w + b3)2]2 = c2
0 (w + b3)4 (4.102)

from which we obtain a Weierstrass elliptic equation

ẇ2 − 4w3 + g2w + g3 = 0. (4.103)

Matching the w4, w3 and w2 terms in (4.102) and (4.103) requires

(
b2

1 − c
)2

=c2
0,

b2b
2
1

(
b2

1 − c
)

+ b3

(
b2

1 − c
)2

=c2
0b3 + b2

1b
2
2,[

b2b
2
1 + b3

(
b2

1 − c
)]2

=c2
0b

2
3 +

b2
1b

2
2c

3
, (4.104)

which yields

b1 =
√
c± c0, (4.105)

b2 =± c0, (4.106)

b3 =∓ c0

2
∓ c

3
. (4.107)

Matching the w1 and w0 terms in (4.102) and (4.103) requires

b3
2b

4
1 + 3b3b

2
2b

2
1

(
b2

1 −
c

3

)
+ 3b2

3b2b
2
1

(
b2

1 − c
)

+ b3
3

(
b2

1 − c
)2

= c2
0b

3
3 −

g2b
2
1b

2
2

4
,[

b2b
2
1 (b2 + 2b3) + b2

3

(
b2

1 − c
)]2

= c2
0b

4
3 − b2

1b
2
2g3. (4.108)

After some algebra, and employing the identities

b2
1 − c = b2, b2

1 −
c

3
= −2b3, b2 + 2b3 = −2c

3
, (4.109)
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we obtain

g2 =
4c2

3
− c2

0, (4.110)

g3 =
c

3

(
c2

0 −
8

9
c2

)
. (4.111)

Equation (4.103) has the solution

w(t) = ℘ (t− t0; g2; g3) , (4.112)

where

℘(z; g2; g3) = z−2 +
g2

20
z2 +

g3

28
z4 +O

(
z6
)

(4.113)

is the Weierstrass elliptic function (Southard, 1972),

t0 = ±℘−1

(
b1b2

b0 − b1

− b3; g2; g3

)
(4.114)

is an integration constant and

b0 = h0

√
d2
i + d2

e. (4.115)

The exact solution for h(t) is obtained by substituting (4.112) into (4.101) to

obtain q(t). Scaling up by (4.96) produces h(t). Finally, noticing that the

singularity occurs when the denominator of (4.101) vanishes, Janda (2019)

obtains the exact singularity time

ts = t0 + ℘−1 (−b3; g2, g3) . (4.116)

4.7.2 Jacobi Elliptic Function

Instead of using Weierstrass elliptic functions, we could search for solutions

based on the Jacobi elliptic function. Brizard (2019) rearranges (4.100) to

q̇2 =
(
q2 − c

)2 − c2
0 (4.117)

which reduces to

q̇2 = c2ε

(
1− q2

c+ c0

)(
1− q2

c− c0

)
, (4.118)
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where

ε = 1− c2
0

c2
. (4.119)

Introducing the variables

q̄ =
q√
c+ c0

, z̄ =

√
c2ε

c+ c0

t+ const., m =
c+ c0

c− c0

, (4.120)

reduces (4.118) to the Jacobi elliptic equation

q̄′(z̄)2 =
(
1− q̄(z̄)2

) (
1−m q̄(z̄)2

)
, (4.121)

and thus

q̄ = ±sn(z̄|m̄), (4.122)

where

sn(z|m) = sinφ, (4.123)

is the Jacobi elliptic function, where φ(z,m) is given by solving

z =

∫ φ

0

dt′√
1−m2 sin2 t′

(4.124)

(Milne-Thompson, 1972). Substituting (4.122) into (4.120) gives an exact q(t)

which can be scaled by (4.96) to produce h(t) in terms of the Jacobi elliptic

function.

4.8 Discussion

In this chapter we have analysed the dynamics of a weakly collisional plasma

and presented a self-similar solution for current sheet formation at a magnetic

neutral line in incompressible Hall MHD. This solution generalises previous

studies (Litvinenko, 2007, and references therein) by considering a general set

of initial conditions. We derived a criterion for finite-time singularity forma-

tion, which describes the collapse to a current sheet, and we illustrated both

the criterion and predicted collapse time with numerical solutions of the Hall
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MHD equations. Finally, we generalised the self-similar solution to incorpo-

rate the resistive, viscous and electron inertia terms in Ohm’s law and the

momentum equation.

The predicted collapse time ts decreases if the strength of the Hall term,

quantified by the ion skin depth di, increases. This result is consistent with

numerical solutions (e.g., Birn et al., 2001, 2005; Shay et al., 2001; Drake et al.,

2008) which show that the Hall effect speeds up the reconnection process. In

the limit di → 0, the singularity formation time ts →∞, corresponding to the

well-established lack of a finite-time singularity in standard MHD collapse.

An alternative point of view is that the Hall effect suppresses the singularity

(Shivamoggi, 2011). We have shown, however, that the singularity is sup-

pressed only for a particular pressure profile in the self-similar solution and

only for a particular set of initial conditions.

In the context of a general initial and boundary value problem, our solution

can be considered as a low-order Taylor expansion of the flux and stream

functions at the origin. This approximation implies that the solution only holds

locally and breaks down at some finite time. Another possible limitation, as in

the corresponding MHD solutions (Chapman and Kendall, 1966), is that for

the solution to be valid in a resistive plasma, a specific varying electric field

must be applied, which is proportional to the plasma resistivity. However,

the argument made by Chapman and Kendall (1966) essentially assumes the

resistive MHD equations have no exact solutions. Uberoi (1966) demonstrates

that the electric field is easily worked out from the solution to Ohm’s law and

therefore applies regardless of whether the resistivity is finite or infinite.

Our solution may be applicable in a weakly collisional plasma of the solar

corona, where the reference values of L = 109.5 cm, B0 = 102 G and n =

109 cm−3 yield the dimensionless ion skin depth di ≈ 10−6.5. Hall reconnection

occurs when di � η1/2. If the Sweet-Parker length scale η1/2 is based on the

collisional resistivity η ∼ T−3/2 of the corona (Spitzer, 1962), then the coronal

temperature T = 106 K gives η ∼ 10−14.5 and so di � η1/2 (e.g., Craig and
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Litvinenko, 2008). Cassak et al. (2006) argue that an explosive character of

magnetic reconnection in solar flares can be explained by a rapid transition

from slow Sweet-Parker reconnection to fast Hall reconnection in an evolving

current sheet. The solution presented here models such rapid transition as a

singularity formation at time ts. Assuming a ∼ h0 ∼ 1, our solution predicts

the transition time ts ∼ 10 tA, where the Alfvèn time tA = L/vA = 100.5 s. This

estimate is consistent with typical flare onset times and simulation results of

Cassak et al. (2006).



Chapter 5

Purely Resistive 2D Linear

Reconnection

5.1 Introduction

Due to the complexity of the full non-linear MHD equations, an exact general

solution for reconnection is difficult to obtain. A simple, but powerful method

of analysing the MHD equations is linearisation. Whereas in usual analytical

treatments, assuming incompressibility is a necessary simplification, linearisa-

tion allows us to study an arbitrarily compressible plasma. Linearisation had

been previously used to investigate the tearing instability (Furth et al., 1963)

and wave propagation near MHD null points (Bulanov and Syrovatskii, 1980;

Bulanov et al., 1990). However, apart from a few other brief forays in the

literature (e.g. Ara et al., 1978; Porcelli, 1987), a full theoretical picture of

linear reconnection was not given until the independent studies of Craig and

McClymont (1991) and Hassam (1992). The linear model was shown to be able

to predict fast reconnection rates proportional to the logarithm of the dimen-

sionless resistivity. Moreover, features of the linear model, namely oscillatory

reconnection, have been present in observations (Hong et al., 2019).

The popularity of the linear reconnection model owes to its ability to release

magnetic energy at a fast rate, proportional to the logarithm of the dimension-
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less resistivity. The model we review is set up by considering an equilibrium

magnetic field perturbed by a reconnective magnetic field. The equilibrium

field takes the form of a magnetic X-point with separatrices initially at right

angles. We then enclose the X-point with a circular conducting boundary

through which no magnetic flux is lost. From this boundary, we send a recon-

nective disturbance towards the origin, upon which it pushes the separatrices

closer together and the reconnection process starts. The system pushes the

separatrices back apart, using pressure forces, in order to try and re-establish

equilibrium. The competition of these effects leads to the oscillatory nature of

the linear reconnection model.

In this chapter, we first review the Craig and McClymont (1991) solution

which is effectively the simplest possible model. We examine the three phases

of linear reconnection- the initial implosion as the disturbance travels out from

the boundary, the oscillatory phase, and a non-oscillatory long-time tail that

occurs once enough energy has been removed from the system. We then review

extensions of the model such as higher-order equilibrium fields (Craig, 1994)

and non-azimuthally symmetric perturbations (Craig and McClymont, 1993).

5.1.1 Governing Equations and Setup

Initially, we want to find the simplest possible model for reconnection using the

linearised MHD equations. Hence, we neglect Hall, electron inertia, viscous

and axial effects. The MHD equations (2.7)-(2.12) in the 2D compressible,

purely resistive regime reduce to

E + v ×B = ηJ, (5.1)

ρ (∂tv + (v · ∇) v) = −∇p+ J×B, (5.2)

∂tρ+∇ · (ρv) = 0 (5.3)

∇ ·B = 0, (5.4)

J = ∇×B, (5.5)

∇× E = −∂tB. (5.6)
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We use the flux function ψ(x, y) to satisfy equation (5.4):

B = ∇× (ψẑ), (5.7)

Assuming E only has a ẑ component, the solution to (5.6) is

E = −∂tψ ẑ, (5.8)

In order to analyse the MHD system, we linearise by

ψ =ψE + δψ + . . . , (5.9)

v =0 + δu + . . . , (5.10)

ρ =ρE + δρ+ . . . (5.11)

p =0 + δp+ . . . (5.12)

where u is the planar plasma velocity. Our equilibrium terms are denoted

with an E superscript and are spatially dependent only. Our first order terms,

multiplied by the perturbation magnitude δ � 1, are spatially and temporally

dependent. We normalise the equilibrium density to be uniform in our units.

That is

ρE(x, y) = 1. (5.13)

We adopt the polytropic gas pressure

p = β̄ργ, (5.14)

which produces the relation

∇p = β̄∇ (ργ) . (5.15)

We linearise about ρ = 1 to obtain

∇p ≈ β∇ρ, (5.16)

where β = γβ̄ is a rescaled plasma beta based on B0. Our system reduces to

−ρt =∇ · v (5.17)

ut =− β∇ρ−∇2ψ∇ψE (5.18)

ψt =− u · ∇ψE + η∇2ψ, (5.19)

where we use subscript notation for time derivatives.
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5.2 Craig-McClymont Solution

Initially, we want to find the simplest possible model for reconnection using the

linearised MHD equations (Craig and McClymont, 1991). Hence, we neglect

pressure effects, in other words take a cold plasma with β � 1, which reduces

(5.18)-(5.19) to

ut =−∇2ψ∇ψE, (5.20)

ψt =η∇2ψ − u · ∇ψE. (5.21)

The equilibrium flux function must satisfy the zeroth order expansion of (5.20)

and (5.21)

ψ →ψE + ψ, u→ 0 + u, (5.22)

which requires a current-free equilibrium

∇2ψE = 0. (5.23)

A simple 2D X-point is described by

ψE =
1

2
r2 sin(2θ), (5.24)

in polar co-ordinates. Note we could also rotate the X-point 90 degrees to

ψE =
1

2
r2 cos(2θ). (5.25)

Since these two solutions are topologically equivalent, we treat them as the

same. Furthermore, the shape of our boundary can be chosen to be circular

or rectangular. These two boundaries are not topologically distinct and we

are looking for solutions that change the topology at the origin. So while

cylindrical co-ordinates are easier for analytical work, we switch to rectangular

boundaries for numerical simulations. Any important scalings will carry over

from cylindrical co-ordinates to Cartesian co-ordinates (Craig and Watson,

1992).
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We differentiate equation (5.21) with respect to time and substitute in

(5.20) and our equilibrium field (5.24). This yields the equation

ψtt = r2∇2ψ + η∇2ψt. (5.26)

A quick asymptotic analysis shows that as r → 0

ψt = η∇2ψ. (5.27)

In other words, we have resistive (Ohmic) dissipation near the origin. Far from

the origin, where η � r2, we have

ψtt = r2∇2ψ, (5.28)

which describes wave-like behaviour at the boundary. There are three phases

to linear reconnection -an initial implosion, the oscillatory eigenmode solution

and finally a long-time tail. We outline each of these phases in the next three

sections.

5.3 Initial Implosive Phase

We perturb our equilibrium magnetic field by sending a reconnective distur-

bance from the boundary r = 1 towards the origin. For the initial phase,

we use the outer boundary approximation (5.28). Introducing the co-ordinate

(Craig and Watson, 1992)

s = − ln r, (5.29)

yields

ψtt = ψss. (5.30)

Equation (5.30) has the d’Alembert solution

ψ(s, t) =
1

2
[f(s− t) + f(s+ t)] , (5.31)

for any arbitrary function f(s, t). To find f we apply the reconnective initial

disturbance

ψ(0, r) = k(1− r2), (5.32)
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where k � 1 is the magnitude of the initial disturbance. Letting f = k(1 −

2 ln s) in (5.31) produces

ψ(r, t) = k
[
1− r2 cosh(2t)

]
, (5.33)

for t < | ln r|. In order to find out how long the solution (5.33) stays significant,

we let ∂t ∼ −1 in (5.21) and (5.20) then combine to find the length scale

l ∼ √η, (5.34)

as in the Sweet-Parker model. Hence the time for a disturbance to travel from

the boundary to the diffusion region is

T =

∫ 1

l

dr

v
. (5.35)

We use the wave speed from equation (5.28) v = r. Substituting into (5.35)

we find

T ∼ | ln (
√
η) |. (5.36)

Notably, the time for the disturbance to reach the origin blows up as η → 0. So,

this model predicts that reconnection will not occur in ideal MHD as expected.

5.4 Exact Hypergeometric solution

The wave-like behaviour of the initial phase motivates an eigenmode analysis

of (5.26) (Craig and McClymont, 1991).

ψ → eimθe−λtψ(r, t). (5.37)

We stress here that we have no reason to expect this solution to be complete. In

fact, (5.37) turns out to be incomplete in the long-time regime. Nevertheless,

substituting into equation (5.26), we find

r(rψ′)′ =

[
λ2r2

r2 − ηλ
+m2

]
ψ, (5.38)

which has a solution in terms of the Bessel function

ψm = Jm

(√
−λ
η
r

)
eimθ. (5.39)
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Equation (5.39) predicts that there will be no current at the null point unless

m = 0, which implies that only m = 0 modes can cause reconnection. Hassam

(1992) found an exact solution to (5.38) by using the change of co-ordinates

z = r2/(ηλ):

(z − 1) (zf ′)
′
=
λ2

4
f +m

z − 1

4z
f, (5.40)

where the dash now refers to differentiation with respect to z. Setting m = 0

yields

(z − 1) (zf ′)
′
=
λ2

4
f, (5.41)

which has the exact solution

f(z) = F (b,−b; 1; z), (5.42)

where b = −λ/2. We note that at the boundary r = 1, we have

z =
1

ηλ
. (5.43)

To approximate f(z) we use a first order series expansion for 1/z → 0 (see

also Craig, 1994; Ofman et al., 1993):

F (b,−b; 1; z) =z−b
(

(−1)−bΓ(−2b)

Γ(1− b)Γ(−b)
+

(−1)−bb2Γ(−2b)

(1 + 2b)Γ(1− b)Γ(−b)z
+ . . .

)
+ zb

(
(−1)bΓ(2b)

Γ(b)Γ(1 + b)
+

(−1)bb2Γ(2b)

(1− 2b)Γ(b)Γ(1 + b)z
+ . . .

)
.

(5.44)

At the boundary z = 1/ηλ, the flux is set to zero. Similarly, for small η, the

terms proportional to 1/z also disappear. This yields

z−2b = −Γ(2b)Γ2(−b)
Γ(−2b)Γ2(b)

. (5.45)

For sufficiently small b we can make the approximation

Γ(b) ≈ 1

b
, (5.46)

and hence for z = 1/(ηλ) and b = −λ/2

(ηλ)λ ≈ −1. (5.47)
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Equation (5.47) has the solution

λ =
iπ

W0(iηπ)
, (5.48)

where W0(x) is the Lambert-W function. Using the approximation

W0(x) ≈ ln(x), (5.49)

the identity

ln(ix) = ln(x) +
iπ

2
, (5.50)

and noting that | ln η| � ln π, we find

λ ≈ 2iπ

(
2 ln η − iπ

4(ln η)2 + π2

)
. (5.51)

Further noting that | ln η| � π/4, we can break λ into its real and imaginary

components as

λ = α− iω, (5.52)

since we want to write

exp(−λt) = exp [(−α + iω)t] (5.53)

in order to match with the notation used by Craig and McClymont (1991).

Hence

ω ≈ π

| ln η|
, (5.54)

α ≈ω
2

2
. (5.55)

5.5 Asymptotic analysis

While Hassam’s exact hypergeometric solution works well for the purely resis-

tive case, it is difficult to obtain exact solutions once we generalise our model

to add more effects such as viscosity and the Hall effect. Hence, we provide a

complimentary method to obtain the scalings (5.54) and (5.55). To do this, we
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note that the linear problem lends itself well to a boundary layer analysis since

we have clearly defined regions -the inner diffusive area and the outer region

near the boundary that contains wave-like behaviour. Hence, we take an inner

solution fI and an outer solution fO and match the ratio of their derivatives

to their solutions fO and fI and their derivatives f ′I and f ′0 in the intermediate

zone (Craig and McClymont, 1993). That is to say

f ′I
fI

=
f ′O
fO

(5.56)

For the inner solution fI we approximate (Craig and McClymont, 1993; Has-

sam, 1992)

fI(r) = 1, (5.57)

in the right hand side of equation (5.38) (upon letting m = 0). Hence

(rf ′I)
′ =

λ2r

r2 − ηλ
, (5.58)

which has the solution

f ′I(r) =
c

r
+
λ2 ln(r2 − ηλ)

2r
. (5.59)

At the origin, the magnetic field vanishes (i.e. f ′(0) = 0). Near the origin

(r → 0) the inner solution f ′I(r) goes to

f ′I(r) =
c

r
+
λ2 ln(−ηλ)

2r
. (5.60)

In order to attain a non-singular solution, we set the integration constant to

c = −λ
2 ln(−ηλ)

2
. (5.61)

For the outer solution fO, we let η = 0 in equation (5.38):

r(rf ′O)′ = λ2fO. (5.62)

Integration yields

fO(r) = c1 cosh [λ ln(r)] + c2 sinh [λ ln(r)] . (5.63)
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At the boundary, we set the flux to zero to create a closed boundary to our

system (i.e. fO(1) = 0). Hence

c1 = 0. (5.64)

Now we match our asymptotic solutions by matching the inner solution in the

limit of large r and the outer solution in terms of small r. For large r, the

inner magnetic field f ′I goes to

f ′I(r) =
λ2

2r
ln

(
r2

ηλ

)
. (5.65)

Recalling equation (5.56), we have the following functions to match

f ′O
fO

=
λ

r
coth (λ ln(r)) (5.66)

f ′I
fI

=
λ2

2r
ln

(
r2

ηλ

)
(5.67)

Equating yields

coth (λ ln(r)) =
λ

2
ln

(
r2

ηλ

)
. (5.68)

which follows to

λ ln(r) = coth−1

[
λ ln(r)− λ ln(ηλ)

2

]
. (5.69)

Using the identity (Craig and McClymont, 1993)

coth−1 x ≈ x+
iπ

2
, (5.70)

and letting λ� 1 yields

λ ln r = λ ln r − λ

2
ln ηλ+

iπ

2
, (5.71)

which reduces to

λ ln(ηλ) = iπ, (5.72)

as before.
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5.6 Long time solution

Mathematically speaking, the reason for three phases of linear reconnection

arises from the non-completeness of the eigenmode solution (5.37). The initial

implosive phase is described by equation (5.33) but we have not yet found a

solution that is valid at large times. Accordingly, we let the change in time be

small, i.e. ψ̈ = 0, in equation (5.26). Hence

r2∇2ψ = −η∂t∇2ψ, (5.73)

which produces (Hassam, 1992)

J(r, t) = exp

(
−r

2

η
t

)
, (5.74)

where the current

J(r, t) = −∇2ψ, (5.75)

has been normalised to be 1 at the origin. Integrating (5.74) yields

ψ′(r, t) =
η

2t

(
c

r
− 1

r
exp

(
−r

2

η
t

))
. (5.76)

Noting that the magnetic field vanishes at the origin (ψ′(0, t) = 0), we set the

integration constant c = 1. Further integration yields

ψ(0, t) =
η ln

(
t
η

)
− ηγ

4t
+ c, (5.77)

where γ is the Euler constant and this c is a new integration constant. For

large t we obtain

ψ(0, t) =
η

4t
ln

(
t

η

)
. (5.78)

This equation describes the long time tail. We also note that during the

oscillatory phase, the current is described by

J = − λ2

r2 − ηλ
f (5.79)

which becomes no longer square integrable as r2 approaches ηλ (McClements

et al., 2004). Noting from (5.18) that

ut = J∇ψE, (5.80)



99

this implies that the kinetic energy is not square integrable and is thus the

bulk of the remaining energy is kinetic rather than magnetic during the long

time tail (McClements et al., 2004).

We note here that the long-time solution may seem unimportant since it

does not become significant until t ∼ η−1/2 (e.g. Craig et al., 2005). However,

in generalised simulations that include terms such as the viscosity (Craig et al.,

2005) or a background axial magnetic field (Craig and McClymont, 1993; Mc-

Clymont and Craig, 1996) the long-time tail can become significant as quickly

as one Alfvén time.

Finally, linear reconnection is upset if nonlinear effects are significantly

large. By comparing terms in (6.2), we estimate the magnitude of perturbation

δ needed for nonlinear terms to invalidate the linear model as δ � l2, which

is a very strict condition.

5.7 Generalised Equilibrium Field

In this chapter, so far we have used a simple second order X-point as our equi-

librium magnetic field in all of our calculations. This begs the question, what

happens if we use a higher order equilibrium field? A zeroth order expansion

of equations (5.1)-(5.6) (i.e. δ = 0) requires that the equilibrium field satisfy

Laplace’s equation:

∇2ψE = 0. (5.81)

We consider the family of harmonic solutions

ψE =
rn

n
sin (nθ) , n ∈ Z, (5.82)

where setting n = 2 returns us to the Craig and McClymont (1991) solution.

Hence the solution to the system (5.20)-(5.21) becomes

ψtt = r2n−2∇2ψ + η∇2ψt, (5.83)
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which implies a wave speed rn−1 in the outer region. The time for a disturbance

to reach the origin from the boundary (5.36) is modified to (Craig, 1994)

τ =

∫ 1

√
η

dr

rn−1
, (5.84)

which integrates to

τ =


1
2
| ln η|, n = 2,

η−1+2/n

n−2
, n > 2.

(5.85)

Hence the initial signal propagation time will only be “fast” (that is- logarith-

mic) if n = 2. Accordingly, the bounce time and thus the oscillation frequency

will only be “fast” if n = 2. Thus, for the rest of this thesis we only consider

the potentially fast case of n = 2.

5.8 Azimuthal Modes

For the eigenmode solution (5.38) to describe reconnection requires ∂θψ = m =

0. This essentially forces any reconnective disturbances to oscillate directly

back and forth between the origin and the outer boundary. However, we could

also include non-reconnective disturbances bouncing around our X-point at

various azimuthal angles in addition to the reconnective perturbations. To

compare these azimuthal modes to the non-azimuthal (m = 0) modes we

follow Craig and McClymont (1993); Craig (1994) and let µ = λ2 +m2. Then

(5.38) becomes

r(rf ′)′ =

(
µ2r2 −m2ηλ

r2 − ηλ

)
f. (5.86)

Letting

z =
r2

ηλ
, (5.87)

equation (5.86) is transformed to

4z(zf ′)′ =
µ2z −m2

z − 1
f, (5.88)
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which has the solution

f(z) =c1z
−m/2F

(
−µ−m

2
,
µ−m

2
; 1−m; z

)
+ c2z

m/2F

(
−µ−m

2
,
µ−m

2
; 1−m; z

)
. (5.89)

Setting the flux to zero at the boundary f(r = 1) = 0 yields

F

(
−µ−m

2
,
µ−m

2
; 1−m;

1

ηλ

)
= 0. (5.90)

In the limit ηλ→ 0 we approximate (5.90) by

(µ−m)Γ(−µ)Γ2
(
µ−m

2

)
(µ+m)Γ(µ)Γ2

(−µ−m
2

) ≈ (− 1

ηλ

)µ
. (5.91)

From here, Craig (1994); Craig and McClymont (1993) took logs of both sides

and matched real and imaginary parts to derive the decay rate

α ∼ | ln η|−3. (5.92)

In other words the non-reconnective disturbances decay even faster than the

reconnective disturbances.

5.9 Gas Pressure Effects

We denote the gas pressure gradient force as

FG = −β∇ρ (5.93)

and aim to find out when the gas pressure has a significant effect of magnetic

reconnection. Noting that

ρ̇ = −∇ · v, (5.94)

and defining the planar magnetic force as being proportional to the planar

acceleration

FP = v̇, (5.95)

in the linearised system (5.17)-(5.19), we obtain (Craig and McClymont, 1993)

F̈G = β∇ (∇ · FP) . (5.96)



102

Using the approximate scaling from (5.37)

∂t ∼ −λ, (5.97)

and then natural scaling that emerges from (5.38)

r2 ∼ ηλ, (5.98)

yields

FG ∼
β

ηλ3
FP. (5.99)

Noting that (5.54) and (5.55) tell us that the oscillation rate is much faster than

the decay rate, and due to its logarithmic dependence on η we can approximate

|λ| ∼ |ω| ∼ 1. (5.100)

Hence we conclude that back pressures will become significant when β ∼ η,

which is a severe restriction.

5.10 Numerical Results

In order to verify our analytical predictions we turn to numerical methods. In

this section we neglect pressure, that is we let β → 0. We consider pressure

effects in numerical simulations in the next chapter. Since, as β → 0, the

density ρ becomes arbitrary, we set ρ = 1 for our simulations. We adopt a

basic differencing method as described by Craig and McClymont (1991, 1993)

over the grid

0 ≤ x ≤ 1, (5.101)

0 ≤ y ≤ 1, (5.102)

and then mirrored over the x and y axes. The flux is tied to the boundary,

that is to say at x = ±1 and at y = ±1

ψ = 0. (5.103)
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Similarly, no plasma is allowed to flow in and out of our system so at the

boundary

u = 0. (5.104)

Using the length scale l ∼ √η, we set the number of points N on the grid to

be

N =
3.6
√
η
. (5.105)

Here, the proportionality constant 3.6 gives us the smallest number of grid

points that retain sufficient resolution and arises from performing the simula-

tions. The grid spacing ∆ = ∆x = ∆y is set to be

∆ =
1

N
(5.106)

Satisfying the Courant-Friedrichs-Lewy condition (Potter, 1973) for numerical

stability requires that the lattice speed ∆/∆t be faster than any physical

speeds in our system. This requires

∆t ≤ ∆

u+
√
v2
s + v2

A

. (5.107)

Here u is the wave speed u ∼ √η. Also, vs = γp/ρ is the sound speed and

vA ∼ 1 in our units. Substituting and rearranging yields the time step

∆t = 0.025 ∆2 1

η + 10−3
. (5.108)

From here, we difference the induction equation (5.21) and the momentum

equation (5.20) by the first-order forward-time central space differencing scheme

with the initial perturbation

ψ =0.1(1− x2)(1− y2), (5.109)

u =0. (5.110)

Note, we also introduce a small viscosity

ν = 10−4η, (5.111)
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to damp the system and smooth potential shocks arising from the resistive

dissipation being too small (see e.g. Richtmyer and Morton, 1967). By con-

vention, we are only interested in the maximum reconnection rate, which we

describe by

ψt(0, t) = ηJz(0, t), (5.112)

or in other words the reconnection rate is proportional to the maximum axial

current through the origin. As we see in Fig. 5.2, the maximum axial current

is inversely proportional to the resistivity. Hence the maximum reconnection

rate is independent of resistivity:

ψt(0, t) ∼ η0. (5.113)

We display the evolution of the X-point over five Alfvén times in Fig 5.3 and

observe reconnection at the origin.

Finally, we show the temporal evolution of the current and magnetic and

kinetic energy of the system with the viscosity reduced to zero. Here, the

magnetic energy is given as

EM =
1

2

∫ 1

0

B2 dA, (5.114)

and the kinetic energy as

EK =
1

2

∫ 1

0

v2 dA. (5.115)

The energy for η = 10−1 through to η = 10−4 is plotted in Fig. 5.4 and the

current is plotted in Fig. 5.1.

5.11 Summary

Linear methods provide a strong tool for analysing arbitrarily compressible

MHD reconnection and predict a fast rate of energy release. Linear reconnec-

tion consists of three distinct phases - an initial implosive phase that occurs on

a timescale ∼ | ln η|, an oscillatory reconnective phase ∼ | ln η|2, that removes
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Figure 5.1: Maximum current over time. Parameters are η = 10−2 and ν = 0.

We observe several oscillations before the long-time phase kicks in.
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Figure 5.2: Resistivity vs Max Current plotted for varying resistivity (plusses)

with ν = 10−4 × η. A basic linear fit (solid line) gives the gradient as -1.0016.

Hence we expect the maximum reconnection rate ψt(0, 0) = ηJz(0, 0) to be

independent of η.
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Figure 5.3: Plot of the magnetic field lines over time. Resistivity is set to

η = 0.01 and viscosity to 10−4. We can see the magnetic field lines approach

the centre then reconnect.
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Figure 5.4: Energy plotted against time. Magnetic energy is red, kinetic energy

is blue and total energy is green. We observe that as resistivity is increased

the duration of oscillations decreases and the long-time phase begins earlier.
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most of the energy out of the system until we are left with a slow energy decay

on a timescale ∼ η.

We find here, following Craig and McClymont (1993) that azimuthal modes

do not contribute to reconnection and in fact are faster that non-azimuthal

reconnective modes. However, Vekstein and Bian (2005) argue that m 6= 0

modes will contribute to reconnection. This warrants further research.

We are severely restricted by the many simplifications we have made. For

instance, gas pressure pushes back against reconnective perturbations and has

the potential to stall reconnection even for small back pressures (Craig and

McClymont, 1993). Yet we assume that the plasma beta is negligible, even

though, out of necessity, we include the much smaller resistive term. There-

fore, even before we start looking at generalisations of the linear reconnection

model in the next chapter, we are already seeing some significant obstacles to

attaining fast reconnection.

In the next chapter we turn our attention to generalisations of the purely

resistive linear reconnection model, namely viscous, axial and pressure effects,

and collisionless effects.



Chapter 6

Generalisations of the Linear

Reconnection Model

6.1 Introduction

In the previous chapter, we gave a complete description of 2D purely resistive

linear reconnection, which describes fast reconnection. This chapter focuses

upon the conditions in which linear reconnection can remain fast. Hence, we

turn our attention to generalisations of the linear reconnection model. Namely,

viscous, axial and pressure effects; and Hall and electron inertial effects.

We classify non-ideal effects into three categories: dissipative effects, namely

resistivity and viscosity (Craig et al., 2005; Tavabi and Koutchmy, 2014); pres-

sure and axial effects (Craig and Litvinenko, 2005; Craig and McClymont,

1993); and collisionless effects, for example the Hall (Senanayake and Craig,

2006b; Craig and Litvinenko, 2008) or electron inertia terms (McClements

et al., 2004; Senanayake, 2007; McClements and Thyagaraja, 2004). Viscous

effects, though they stall the reconnective process, provide an additional av-

enue for dissipative energy release. In other words, there is a possibility for

the fast energy release rate during a solar flare to occur despite a formally slow

reconnection rate as a consequence of a viscous mechanism (Craig et al., 2005;

Armstrong et al., 2011).
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Additionally, we extend the theory of linear reconnection to 2.5D by testing

two different sites for reconnection. In two dimensions, magnetic reconnection

can only occur at a magnetic null point. However, in three dimensions, a

possible new site for magnetic reconnection emerges called a quasi-separatrix

layer (QSL) (Priest and Démoulin, 1995). Craig and Effenberger (Craig and

Effenberger, 2014; Effenberger and Craig, 2016) argued that a null point is

required for fast reconnection and that QSL reconnection will be slow. Using a

linear model, we investigate whether fast oscillatory reconnection is attainable

in 2.5D at two different sites- one being a 2.5D null line and the other with

a constant background axial field that mimics a QSL. Note, in a fully 3D

system, our sites would correspond to a 3D null line and a QSL with an infinite

squashing factor Q⊥ → ∞ (Craig and Pontin, 2014) respectively. However,

since these sites are as close to representing QSLs and 3D null points as possible

in 2.5D, we will refer to our sites as ‘QSL-type’ and ‘3D null-type’ here. We

find evidence that fast reconnection is only possible at 3D null-type site.

6.2 Governing Equations and Length Scales

For the sake of convenience, we start by restating the dimensionless, compress-

ible MHD equations (2.7)-(2.12):

E + v ×B = ηJ + di(J×B−∇pe)

+ d2
e[∂tJ + (v · ∇)J + (J · ∇)v], (6.1)

ρ [∂tv + (v · ∇)v] = −∇p+ J×B + ν∇2v, (6.2)

∂ρ

∂t
+∇ · (ρv) = 0, (6.3)

∇ ·B = 0, (6.4)

J = ∇×B, (6.5)

∇× E = −∂tB. (6.6)

We use a scalar viscosity, though the full Braginskii viscosity case has been

previously considered by Craig (2008) (see also Craig and Litvinenko, 2007;
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Minoshima et al., 2016; MacTaggart et al., 2017).

In 2.5D we consider three dimensions but let ∂z = 0 and represent the

velocity v by its planar component u and its axial component W :

v = (u,W ). (6.7)

To represent the magnetic field, we use the flux function ψ(x, y) with an axial

component Z to satisfy equation (6.4) in 2.5D:

B = ∇× (ψẑ) + Zẑ. (6.8)

We again adopt the polytropic gas pressure (5.14) and linearise about ρ = 1

to obtain

∇p ≈ β∇ρ, (6.9)

where β = γβ̄ is again a rescaled plasma beta based on B0. Our system

linearises to

−ρt =∇ · u, (6.10)

ut +∇(ZEZ) =− β∇ρ−∇2ψ∇ψE −∇2ψE∇ψ

+ ν(∇2u + 1
3
∇ (∇ · u)), (6.11)

ψt + u · ∇ψE =η∇2ψ + d2
e∇2ψt + di[ψ

E, Z] + di[ψ,Z
E], (6.12)

Zt +∇ · (ZEu) =η∇2Z + [W,ψE] + d2
e∇2Zt

+ di[∇2ψ, ψE] + di[∇2ψE, ψ], (6.13)

Wt =[ZE, ψ] + [Z, ψE] + ν∇2W, (6.14)

where a superscript E denotes an equilibrium quantity, t subscripts denote

time derivatives, and Poisson bracket notation is typified by

[ψ,Z] = (∂xψ) ∂yZ − (∂yψ) ∂xZ. (6.15)

While the linearised MHD system appears complicated, it contains a fast re-

connection solution in the purely resistive regime. So the linearised system

allows us to investigate the way viscous, pressure, axial or collisionless effects

perturb fast reconnection in an analytically convenient manner.



112

6.2.1 Equilibrium Fields

We obtain an equilibrium solution by letting ρ → 1, p → β, v → 0 and

B→ BE in equation (6.2). Hence, we require a force free equilibrium

JE ×BE = 0. (6.16)

Employing (6.16) yields

∇2ψE∇ψE =− ZE∇ZE, (6.17)

[ZE, ψE] =0. (6.18)

In order to satisfy equation (6.18) we take

ZE = ZE(ψE), (6.19)

and substitute back into equation (6.17). Now, ZE satisfies the Grad-Shafranov

equation

∇2ψE = −ZE

(
dZE

dψE

)
. (6.20)

If ZE = 0, the right hand side vanishes and thus the equilibrium flux function

satisfies Laplace’s equation (Craig, 1994)

∇2ψE = 0, (6.21)

which has the solution

ψE = ψE(z), (6.22)

where z = x+ iy. We expand ψE as a function of powers zn, for which Craig

(1994) showed only terms of the order n = 2 can accommodate fast dissipation.

Therefore, we set

ψE = Im

[
1

2
(x+ iy)2

]
= xy. (6.23)

A simple extension of (6.23) into 2.5D, which preserves (6.21), is

ψE = xy, ZE = z0 = const., (6.24)
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which mimics a QSL. We note that a true QSL is bounded on the z axis, what

we describe here is a 2.5D analogue of a QSL, with squashing factor Q⊥ →∞.

Here, the squashing factor between the planes z = ±zm is defined (Titov,

2007) as

Q⊥ = 2 cosh

(
4zm
Bz

)
. (6.25)

Hence, we refer to (6.24) as a ‘QSL-type’ magnetic field.

More generally, we solve (6.20) by assuming

∇2ψE = f
(
ψE
)
. (6.26)

A mathematically convenient solution to (6.26) is to set f ∼ ψE, which yields

ψE =
1

µ2
sin(µx) sin(µy), ZE =

√
2µψE, (6.27)

which describes a 3D null line. However, since (6.27) is a 2.5D analogue of a

3D null point, we refer to (6.27) as a ‘3D null-type’ magnetic field.

The parameter µ describes the magnitude of the axial field and letting

µ → 0 recovers the planar X-point equilibrium (6.23). We note that other

functions f also generate solutions, for example f ∼ exp
(
ψE
)
. However, we

restrict ourselves to the case (6.27) for the sake of simplicity. The equilibrium

fields in (6.24) and (6.27) are particular cases of

ψE =
1

µ2
sin(µx) sin(µy), ZE =

√
2µ2(ψE)2 + z2

0 , (6.28)

where we have chosen the axial field to be positive.

6.2.2 Length Scales

In this subsection, we determine estimates for a length scale that incorporates

viscous, pressure and axial effects; and a length scale that includes the Hall

effect and electron inertia. Considering equations (6.10)-(6.14) with di = de =
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0 and ZE = z0 yields the system

−ρt =∇ · u (6.29)

ut =− z0∇Z − β∇ρ−∇2ψ∇ψE + ν(∇2u + 1
3
∇ (∇ · u)), (6.30)

ψt =− u · ∇ψE + η∇2ψ (6.31)

Zt =− z0∇ · u + η∇2Z +
(
BE · ∇

)
W (6.32)

Wt =
(
BE · ∇

)
Z + ν∇2W. (6.33)

We use these equations to infer a characteristic length scale of magnetic re-

connection. Dimensionally, we take

∇ → 1/r, ∂t → −λ, ψE → r2, |u| → u, (6.34)

to obtain

λρ ∼u
r
, (6.35)

−λu ∼− z0Z

r
− βρ

r
− ψ

r
+
νu

r2
, (6.36)

−λψ ∼− ur +
ηψ

r2
, (6.37)

−λZ ∼− z0u

r
+
ηZ

r2
+W, (6.38)

−λW ∼Z +
νW

r2
. (6.39)

We want to understand how viscous and axial effects modify the length scale.

While it is possible to solve equations (6.35)-(6.39) for r, the solution is too

complicated to allow any simple understanding to be extracted. Instead, we

insist that the axial field Z affects the velocity u solely as a back pressure (Craig

and McClymont, 1993). That is to say, we expect the pressure, dissipation and

shearing terms on the right hand side of (6.32) to have comparable magnitudes:

−z0∇ · u ∼ η∇2Z ∼
(
BE · ∇

)
W, (6.40)

since

ηλ∇2Z ∼ Z ∼ λW, (6.41)
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by (6.33) and

|W |
|u|
∼ z0

|BE|
. (6.42)

Hence, we reduce equation (6.32) to its dynamic and back pressure terms and

let

∇Z ∼ −z0

λ
∇ (∇ · u) (6.43)

in (6.30). Now applying (6.34) to (6.30), taking into account (6.43), and

rearranging yields

λ2r2u ∼
(
z2

0 + β − νλ
)
u+ λrψ. (6.44)

The length scale of the diffusion region is the distance from the origin to the

point where the diffusion speed matches the advection speed. The advective

and diffusive terms in (6.31) will balance when

ru ∼ηψ
r2
, (6.45)

at the point r = rs. Substituting (6.45) into (6.44) and rearranging yields

r4
s ∼ r2

sηλ−
η

λ

(
β + z2

0 − νλ
)
. (6.46)

Solving for r2
s , we obtain

r2
s ∼

ηλ± ηλ
(

1 +
νλ−β−z20

ηλ3

)1/2

2
, (6.47)

which, since ηλ . ηλ
(

1 +
νλ−β−z20

ηλ3

)1/2

, implies the length scale

r2
s ∼ ηλ

(
1 +

νλ− β − z2
0

ηλ3

)1/2

. (6.48)

Note that if we set ν = β = z0 = 0, we recover the Sweet-Parker length scale

rs = η1/2. Furthermore, we recover the visco-resistive length scale rs = (ην)1/4

if we set β = z0 = 0 and ν � η (Park et al., 1984). In order to find the

collisionless length scale we consider equations (6.11)-(6.14) with ν = ZE =
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β = 0:

ut =−∇2ψ∇ψE (6.49)

ψt =− u · ∇ψE + η∇2ψ + d2
e∇2ψt + di[ψ

E, Z], (6.50)

Zt =η∇2Z + [W,ψE] + d2
e∇2Zt + di[∇2ψ, ψE], (6.51)

Wt =[Z, ψE]. (6.52)

Comparing terms in (6.51)

η∇2Z ∼ di[∇2ψ, ψE]. (6.53)

Taking ∂r ∼ 1/r, ψE ∼ r, ∂t ∼ −λ and r2 ∼ ηλ, we estimate that

Z ∼ diλ∇2ψ. (6.54)

Substituting (6.49) and (6.54) into (6.50), we obtain the collisionless length

scale

r2
s ≈ ηλ

(
1− (d2

i + d2
e)λ

η

)
. (6.55)

Setting di = de = 0 recovers the Sweet-Parker scale rs =
√
η as expected.

Equations (6.48) and (6.55) show that viscous and resistive effects increase

the area of the diffusion region, while pressure, axial and collisionless effects

decrease the size of the diffusion region. We note that our length scale only

applies under the condition that the magnitude of axial dissipation or shearing

are less than or comparable to the magnitude of axial back pressure in (6.32).

6.3 Oscillatory Reconnection

6.3.1 Introduction

The Craig and McClymont (1991) model describes an equilibrium magnetic

field ψE = xy disturbed by a reconnective perturbation field. The equilib-

rium field takes the form of a magnetic X-point with separatrices initially at

right angles. We then enclose the X-point with a circular conducting bound-

ary through which no magnetic flux is lost. From this boundary, we send a
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reconnective disturbance towards the origin. The disturbance gets advected

into the diffusion region, then diffuses through the origin and gets advected

out towards the opposite boundary.

Far from the origin, where η, ν, z0, β → 0, equations (6.30) and (6.31)

reduce to the wave equation

ψtt = r2∇2ψ, (6.56)

with wave speed r (Craig and McClymont, 1991). Consequently, the wave

slows down and builds up as it approaches the origin. Furthermore, the wave

would take an infinite time t ∼ 1/r to reach the null in the absence of resistive

or other diffusive effects. More generally, in a non-radial context, the wave

focuses towards the null point due to a refraction effect (McLaughlin and

Hood, 2004; McLaughlin et al., 2011).

In this section, we neglect collisionless effects and set di = de = 0. Fur-

thermore, we consider a QSL-type axial equilibrium field that is much smaller

than the magnitude of the planar magnetic field ZE = z0 � 1.

There are three stages of energy release as seen in Figs. 6.1-6.3. First, there

is an initial implosive phase that begins when we send a disturbance from the

boundary of our system towards the origin (Craig and Watson, 1992). We call

the duration of the initial phase the bounce time:

tb =

∫ 1

l

dr

v
= | ln rs|, (6.57)

where rs is the length scale of the diffusion region given by equation (6.48).

Once the disturbance reaches the diffusion region, a second oscillatory stage of

energy release commences. As shown in previous studies oscillations are only

possible if viscous, pressure or collisionless effects are sufficiently small (e.g.

Craig et al., 2005; McClements et al., 2004; McClymont and Craig, 1996). We

consider larger pressure, axial and viscous effects in the next section. We also

note that there is a final slow stage of energy release after which the bulk of

the energy has been lost (e.g. Hassam, 1992). However, we do not consider the

effect of viscous, collisionless or axial effects on the long-time phase.
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Figure 6.1: Magnetic energy (dot-dashed), kinetic energy (solid) and total

energy (dotted) plotted against time where η = 10−2, ν = 0.01η and β = z0 =

0.
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Figure 6.2: Velocity field ux plotted against x over time where η = 10−2,

ν = 0.01η and β = z0 = 0.
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Figure 6.3: Magnetic field Bx plotted against x over time where η = 10−2,

ν = 0.01η and β = z0 = 0.

The decay and oscillation rates are important quantifiers of oscillatory re-

connection, particularly in comparing our model to observations (Thurgood

et al., 2019). Craig and McClymont (1991) quantified the oscillatory phase by

considering an eigenmode solution to (6.10)-(6.14). In other words they let

ψ(r, θ, t) = e−λt+imθf(r), (6.58)

where the eigenvalue λ = α−iω consists of the decay rate α and the oscillation

frequency ω. Our purpose here is to extend the Craig and McClymont (1991)

scalings

α0 =
ω2

0

2
, ω0 =

π

| ln η|
, (6.59)

to incorporate pressure, viscous and axial effects. We detail a generalisation

of Craig and McClymont (1991) and Hassam’s (1992) asymptotic method for

calculating λ and Hassam’s (1992) Hypergeometric method in the next two

sections. However, for estimating λ a simpler energetic scaling argument gives

us insight into the modifications of viscous, pressure or axial terms on energy

release.
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We derive a generalisation by perturbing the Craig and McClymont (1991)

solution. Hence, the condition required for topological change at the origin

m = 0, inferred by equation (5.39), remains approximately true.

6.3.2 Asymptotic Solution

We construct an asymptotic solution to equations (6.10)-(6.14) by consider-

ing an inner solution and an outer solution (e.g. Hassam, 1992; Craig and

McClymont, 1993). In the purely resistive case, after employing (6.58) with

m = 0, equations (6.11) and (6.12) combine to

λ2f =
(
r2 − ηλ

)
∇2f, (6.60)

which we generalise to

λ2f =
(
r2 − r2

s

)
∇2f, (6.61)

where rs is given by equations (6.48) or (6.55). The inner solution fI is ap-

proximately unity near the origin, so we solve

1

r
(rf ′I)

′
=

λ2

r2 − r2
s

. (6.62)

Integrating and requiring that f ′I remains finite as r → 0 to solve for the

integration constant yields

f ′I =
λ2

2r
ln

(
1− r2

r2
s

)
. (6.63)

On the other hand, we solve the outer solution fO of (6.61) by letting r2/r2
s �

1. Accordingly,

r2∇2fO = λ2fO, (6.64)

which has the solution

fO = k sinh (λ ln r) , (6.65)

for the boundary condition fO(1) = 0, and some arbitrary constant k. We

match the asymptotic solutions by applying the matching condition (Craig
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and McClymont, 1993)

f ′I
fI

∣∣∣∣
r→∞

=
f ′O
fO

∣∣∣∣
r→0

. (6.66)

Hence

λ2

2r
ln

(
r2

r2
s

)
=
λ

r
coth (λ ln r) . (6.67)

For small λ, we use the identity coth−1(x) ≈ x + iπ/2. Thus, we reach the

equation

λ ln
(
r2
s

)
= iπ, (6.68)

which Craig and McClymont (1991) separated into real and imaginary parts,

for r2
s = ηλ, to obtain the scalings (6.59). More generally, considering viscous,

axial and pressure effects, we substitute equation (6.48) into (6.68):

λ ln

[
ηλ

(
1 +

ν

ηλ2
− z2

0 + β

ηλ3

)1/2
]

= iπ, (6.69)

In the collisionless case, we substitute (6.55) into (6.68):

λ ln
[
ηλ−

(
d2
i + d2

e

)
λ2
]

= iπ. (6.70)

The more general equations (6.69) and (6.70) are too complex to solve analyti-

cally. Hence, we end up turning to a scaling argument. Alternatively, equations

(6.69) and (6.70) can be derived using Hypergeometric functions (e.g. Hassam,

1992), which we demonstrate for completeness in the next subsection

6.3.3 Hypergeometric Solution

We search for an exact solution to (6.61) in terms of the Hypergeometric

function by employing the change of co-ordinates z = r2/r2
s :

(z − 1) (zf ′)
′
=
λ2

4
f +m

z − 1

4z
f, (6.71)

where the dash now refers to differentiation with respect to z. Setting m = 0

yields

(z − 1) (zf ′)
′
=
λ2

4
f, (6.72)
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which has the exact solution

f(z) = F (b,−b; 1; z), (6.73)

where b = −λ/2. We note that at the boundary r = 1, we have

z =
1

r2
s

. (6.74)

To approximate f(z) we use a first order series expansion for 1/z → 0 (see

also Craig, 1994; Ofman et al., 1993):

F (b,−b; 1; z) =z−b
(

(−1)−bΓ(−2b)

Γ(1− b)Γ(−b)
+

(−1)−bb2Γ(−2b)

(1 + 2b)Γ(1− b)Γ(−b)z
+ . . .

)
+ zb

(
(−1)bΓ(2b)

Γ(b)Γ(1 + b)
+

(−1)bb2Γ(2b)

(1− 2b)Γ(b)Γ(1 + b)z
+ . . .

)
.

(6.75)

At the boundary z = 1/r2
s , the flux is set to zero. Similarly, for small η, the

terms proportional to 1/z also disappear. This yields

z−2b = −Γ(2b)Γ2(−b)
Γ(−2b)Γ2(b)

. (6.76)

For sufficiently small b we can make the approximation

Γ(b) ≈ 1

b
, (6.77)

and hence for z = 1/r2
s and b = −λ/2

(rs)
2λ ≈ −1, (6.78)

which matches equation (6.68).

6.3.4 Scaling Argument

In order to calculate the oscillation frequency, we estimate that the time for

a disturbance to travel to and from the diffusion region tb ∼ | ln rs| is much

greater than the diffusion time td ∼ 1. Furthermore, a full oscillation must

last for four bounce times, so the period is T = 4tb (Thurgood et al., 2019)

and the oscillation frequency is

ω ∼ 2π

T
∼ π

| ln (r2
s) |

. (6.79)
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Expanding the logarithm yields

ω ∼ π∣∣∣ln η + 1
2

ln
(

1 +
ν−β−z20

η

)∣∣∣ . (6.80)

For sufficiently small axial and viscous terms

ν − β − z2
0

η
� 1, (6.81)

we take

ln

(
1 +

ν − β − z2
0

η

)
≈ ν − β − z2

0

η
, (6.82)

and hence

ω ∼ π

|ln η|

(
1− ν − β − z2

0

2η| ln η|

)−1

. (6.83)

Finally, we assume η| ln η| ∼ η since | ln η| is near unity when compared to the

very small η, to obtain

ω ∼ π

| ln (η) |

(
1 +

ν − β − z2
0

η

)
. (6.84)

The oscillation frequency (6.84) reduces to the purely resistive frequency (6.59)

upon setting ν = β = z0 = 0. In order to estimate the energy decay rate, we

calculate the perturbation energy of the system

E = Etotal − Eequilibrium, (6.85)

by adding the kinetic and magnetic energies per unit length in the z direction.

We describe the total density by adding the equilibrium density ρE = 1 and

the perturbation density ρ. Since the equilibrium kinetic energy is zero, the

perturbation kinetic energy is the same as the total kinetic energy:

EK =
1

2

∫∫
A

(1 + ρ)u2 rdr dθ, (6.86)

where u2 = u · u. The perturbation magnetic energy is

EM =
1

2

∫∫
A

(
B2 + 2B ·BE

)
rdr dθ, (6.87)
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where the equilibrium magnetic field in polar co-ordinates is given by

BE = (r cos(2θ),−r sin(2θ), z0) . (6.88)

Integrating over θ, the planar components of BE will vanish. Similarly, the

terms z0Z and ρu2 will be sinusoidal, and thus vanish, since we expect, based

on equation (6.30), that Z and ρ will take a similar form to ψE. Therefore, we

obtain the perturbation energy

E =
1

2

∫ 2π

0

∫ 1

0

[(
∂ψ

∂r

)2

+ u2 + Z2 +W 2

]
r dr dθ. (6.89)

We assume that u2 ∼ B2, in other words that the magnitudes of kinetic energy

and magnetic energy at the onset of the oscillatory phase are roughly equal, as

observed in Fig. 6.1 (see also e.g. Craig et al., 2005; McClements et al., 2004).

Hence, we estimate the total energy in the plane to be

E ∼ 2πq|ψ|2, (6.90)

where the factor

q = 1 +
|Z|2

|Bp|2
, (6.91)

reduces to unity in the 2D case. In order to explore how the kinetic energy

changes over time, we again assume (6.43)- that the axial field Z primarily

affects the velocity u as a back pressure. We now differentiate the total energy

(6.89) with respect to time and substitute equations (6.30)-(6.33) with (6.43).

Furthermore, integrating by parts, we obtain

dE
dt

= −
∫ 2π

0

∫ 1

0

[
ν (∂rW )2 +

(
η − β + z2

0

λ

)
(∂rZ)2

+ηJ2 +

(
4ν

3
− β + z2

0

λ

)
|∇ · u|2 + ν |∇ × u|2

]
rdrdθ. (6.92)

Comparing terms from (6.30) dimensionally,

λ|u| ∼ rJ, (6.93)
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and taking ∂r ∼ 1/r, we approximate

|∇ · u| ∼ |∇ × u| ∼ J

λ
. (6.94)

It follows that equation (6.92) reduces to

dE
dt

= −2πq

(
η +

νλ− β − z2
0

λ3

)∫ 1

0

J2 rdr. (6.95)

We assume all of the Ohmic heating occurs within the resistive diffusion region

and thus integrate (6.95) between 0 < r < rs. Roughly, following (Craig and

McClymont, 1993) and (Hassam, 1992), we assume that the flux is relatively

constant, or in other words ψ ≈ ψ(0, t) within the diffusion region. Near the

origin, the plasma velocity u→ 0 so we approximate (6.31) by

ψt ≈ ηJ. (6.96)

We let |∂t| ∼ |λ| = (α2 + ω2)
1/2

and approximate ω2 � α2, which is true for

small η, to obtain the magnitude of diffused current as

J ∼ ω

η
ψ. (6.97)

Substituting (6.97) into (6.95) and integrating for an approximately constant

current J yields∣∣∣∣dEdt
∣∣∣∣ =

πqr2
sω

2

η

(
1 +

νλ− β − z2
0

ηλ3

)
. (6.98)

The decay rate α is defined as

α =

∣∣∣∣dEdt
∣∣∣∣ /E . (6.99)

Hence, we divide (6.98) by the total energy (6.90) and take

ηλ ∼ η, (6.100)

since we expect λ to be logarithmic and thus near unity in comparison to the

very small η, to obtain

α ≈ ω2

2

(
1 +

ν − β − z2
0

η

)3/2

. (6.101)

Equations (6.101) and (6.84) generalise the Craig and McClymont (1991) decay

and oscillation rates (6.59) for the cases ν, β, z0 6= 0.
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6.3.5 Gas Pressure Effects

The previous subsection begs the question- under what circumstances will

oscillatory reconnection persist? Fast, oscillatory reconnection can be undone

by a sufficiently large pressure gradient that blocks the entry of fresh magnetic

flux to the diffusion region (Craig and McClymont, 1993). For gas pressure

effects we denote the gas pressure force as

FG = −β∇ρ (6.102)

and aim to find out when the gas pressure has a significant effect of magnetic

reconnection. Noting that

ρ̇ = −∇ · v, (6.103)

and defining the planar magnetic force as being proportional to the planar

acceleration

FP = v̇, (6.104)

we obtain

F̈G = β∇ (∇ · FP) . (6.105)

Letting ∇ ∼ 1/rs and ∂t ∼ −λ,

FG ∼
β

λ2r2
s

FP. (6.106)

Hence, Craig and McClymont (1993) showed gas pressure will stall resistive

dissipation, where r2
s ∼ ηλ, if

β & ηλ3 (6.107)

However, consider the magnitude of viscous forces

Fν = ν∇2v. (6.108)

Comparing to (6.105), we observe

FG ∼
β

νλ
Fν . (6.109)
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Hence, we conclude that gas pressure stalls viscous dissipation if

β & νλ. (6.110)

Significantly, the stalling caused by pressure forces can be counter-balanced

by viscous effects. Gas pressure can only stall energy release if the conditions

(6.107) or (6.110) are met. In the solar corona, the dimensionless viscosity

ν ∼ 10−4.5 (e.g. Spitzer, 1962; Craig et al., 2005) and the plasma beta β ∼

10−2 − 10−4 (e.g. Gary, 2001) are roughly equivalent but β is many orders of

magnitude larger than the dimensionless resistivity η. Hence plasma pressure

forces will significantly oppose resistive dissipation but not viscous dissipation.

6.3.6 Axial Magnetic Effects

The axial magnetic field acts as a back pressure (Craig and McClymont, 1993)

that opposes energy dissipation. Hence, a similar analysis to the previous

subsection can be performed to compare whether a QSL-type site or a 3D

null-type site would better accommodate fast energy dissipation. We define

the axial force

FA = ∇
(
ZEZ

)
. (6.111)

For a QSL-type axial magnetic field, we let ZE = z0 and differentiate (6.43)

with respect to time to obtain

ḞA ∼
z0

λ
∇ (∇ · FP) (6.112)

Letting ∇ ∼ 1/rs, ∂t ∼ −λ, we obtain

FA ∼
z2

0

λ2r2
s

FP. (6.113)

Hence, axial magnetic pressure will stall resistive dissipation, where r2
s = ηλ,

if

z2
0 & ηλ3. (6.114)
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On the other hand, if we have an initial 3D null -type geometry ZE = µψE,

where ψE is bounded by r2/2, then we estimate

|ZE| ∼ µr2 ∼ µηλ. (6.115)

Replacing z0 with µη in (6.114) implies

µ &

(
λ

η

)1/2

, (6.116)

as the condition for axial effects to stall resistive energy dissipation. Consid-

ering that η is a very small quantity in the corona, we would require an axial

magnetic field many orders of magnitude larger than the planar magnetic field

to stall reconnection in the 3D null-type case. We might expect the axial

magnetic field to have, at most, a similar magnitude to the planar magnetic

field.

The key result of this section is that we do not expect a QSL-type site

to support fast reconnection, however a 3D null-type site has the potential to

accommodate fast reconnection.

6.4 Numerical Results

In order to verify our analytical predictions we turn to numerical methods.

We adopt a basic differencing method as described by Craig and McClymont

(1991, 1993) over the grid

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (6.117)

and then mirrored over the x and y axes. The flux is tied to the boundary and

no plasma is allowed to flow in or out of our system, that is to say that

ψ = 0, u = 0, (6.118)

∇Z = 0, W = 0, (6.119)

at

(x, y) = (±1,±1). (6.120)
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The number of points in our grid is inversely proportional to the Sweet-Parker

scale
√
η. We difference equations (6.10)-(6.14) by the forward time central

differencing scheme with the initial perturbation

ψ =0.1(1− x2)(1− y2), (6.121)

u =0, (6.122)

(see e.g. Richtmyer and Morton, 1967). We want to verify the decay and

oscillation rates of the magnetic and kinetic energy of the system and so we

follow the method of Craig and Litvinenko (2008). We measure the normalised

change in decay rate

α1 =
α− α0

α0

, (6.123)

and normalised change in oscillation rate

ω1 =
ω − ω0

ω0

(6.124)

by considering the difference between the second and fourth minima in the

magnetic energy (for viscous and axial effects) or kinetic energy (for pressure

effects). From equations (6.84) and (6.101), we predict that

α1 ∼
ν − β − z2

0

η
, ω1 ∼

ν − β − z2
0

η
. (6.125)

Note that while in this case α1 and ω1 happen to be comparable, this is not

always true. Collisionless effects, such as the Hall effect or electron inertia,

decrease the length scale and thus decrease the oscillation frequency. However,

decreasing the length scale increases the current at the origin and increases

the decay rate. Numerical simulations investigating the oscillation and decay

rates of collisionless regimes have been carried out elsewhere in the literature

(Senanayake and Craig, 2006b; Craig and Litvinenko, 2008; McClements et al.,

2004; Senanayake, 2007).

For viscous effects, we expect an increased oscillation frequency ω1 ∼ ν/η

which we verify numerically in Figs. 6.4-6.5. Similarly, equation (6.125) pre-

dicts an increased decay rate α1 ∼ ν/η which we verify in Figs. 6.6-6.7. While
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Figure 6.4: Change in oscillation rate plotted against the log of ν/η for fixed η

and varied ν. Runs are performed for η = 10−2 (pluses) and η = 10−3 (stars).

A linear fit describes the lines as ω1 = 2.7884 (ν/η)0.87260 (solid line) and

ω1 = 0.98307 (ν/η)0.87851 (dashed line) respectively, which compare favourably

to the predicted (6.125).

the oscillation frequency and decay rate match up well to our predictions for

small ν/η . 10−4, as we increase the viscosity we see the onset of the high-

frequency long-time phase as ν/η → 1 (see Craig et al., 2005).

Pressure effects reduce the decay and oscillation rates by a factor of β/η, as

shown in Figs. 6.8- 6.9 and 6.10-6.11 respectively. These runs require additional

dissipation to prevent the system from blowing up, and thus we consider a

viscosity ν = 0.01η. For large pressure β/η → 1, oscillations are suppressed.

Interestingly, for lower β/η than displayed in Fig. 6.9, the oscillation frequency

actually increases.

Finally, axial effects reduce the decay and oscillation rates by a factor of

z2
0/η as depicted in Figs. 6.12-6.13 and 6.14-6.15 respectively. The axial field

strength has to be relatively large z0/
√
η & 10−2 in order for the difference

in oscillation frequencies to become noticeable. The difference in decay rate

matches well to our prediction for small z0/
√
η and starts to decay as z0/

√
η →

1.
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Figure 6.5: Change in oscillation rate plotted against the log of ν/η for fixed

η and varied ν. Runs are performed for η = 10−2 (black), η = 3× 10−3 (blue),

η = 10−3 (red), η = 3 × 10−4 (green) and η = 10−4 (cyan). The dotted line

corresponds to an increase in decay rate ω1 ∼ ν/η as predicted by equation

(6.125).
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Figure 6.6: Normalised change in decay rate plotted against the log of ν/η

for fixed η and varied ν. Runs are performed for η = 10−2 (pluses) and η =

10−3 (stars). A linear fit describes the lines as α1 = 59.129 (ν/η)0.96927 (solid

line) and α1 = 2.7736 (ν/η)0.93889 (dashed line) respectively, which compare

favourably to the predicted (6.125).
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Figure 6.7: Normalised change in decay rate plotted against the log of ν/η for

fixed η and varied ν. Runs are performed for η = 10−2 (black), η = 3 × 10−3

(blue), η = 10−3 (red), η = 3× 10−4 (green) and η = 10−4 (cyan). The dotted

line corresponds to an increase in decay rate α1 ∼ ν/η as predicted by equation

(6.125).
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Figure 6.8: Change in decay rate plotted against the log of β/η with ν = 0.01η

for fixed η and varied β. Runs are performed for η = 10−2 (pluses) and η = 3×

10−3 (stars). A linear fit describes the lines as α1 = −696.95 (β/η)1.1843 (solid

line) and α1 = −74.080 (β/η)1.1476 (dashed line) respectively, which compare

favourably to the predicted (6.125).
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Figure 6.9: Change in decay rate plotted against the log of β/η with ν = 0.01η

for fixed η and varied β. Runs are performed for η = 10−2 (black), η = 3×10−3

(blue), η = 10−3 (red) and η = 3× 10−4 (green). The dotted line corresponds

to a decrease in decay rate α1 ∼ −β/η as predicted by equation (6.125).
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Figure 6.10: Change in oscillation rate plotted against the log of β/η with ν =

0.01η for fixed η and varied β. Runs are performed for η = 10−2 (pluses) and

η = 3×10−3 (stars). A linear fit describes the lines as ω1 = −292.48 (β/η)1.0203

(solid line) and ω1 = −39.728 (β/η)0.93026 (dashed line) respectively, which

compare favourably to the predicted (6.125).
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Figure 6.11: Change in oscillation rate plotted against the log of β/η with

ν = 0.01η for fixed η and varied β. Runs are performed for η = 10−2 (black),

η = 3 × 10−3 (blue), η = 10−3 (red) and η = 3 × 10−4 (green). The dotted

line corresponds to a decrease in oscillation rate ω1 ∼ −β/η as predicted by

equation (6.125).
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Figure 6.12: Change in decay rate plotted against the log of z0/
√
η for fixed η

and varied z0. Runs are performed for η = 10−2 (pluses) and η = 10−3 (stars),

where ν = 0. A linear fit describes the lines as α1 = −56.728
(
z0/
√
η
)2.0000

(solid line) and α1 = −7.0778
(
z0/
√
η
)2.0000

(dashed line) respectively, which

compare favourably to the predicted (6.125).
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Figure 6.13: Change in decay rate plotted against the log of z0/
√
η for fixed η

and varied z0. Runs are performed for η = 10−2 (black), η = 3 × 10−3 (blue)

and η = 10−3 (red), where ν = 0. The dotted line corresponds to a decrease

in decay rate α1 ∼ −z2
0/η as predicted by equation (6.125).
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Figure 6.14: Change in oscillation rate plotted against the log of z0/
√
η

for fixed η and varied z0. Runs are performed for η = 10−2 (pluses)

and η = 10−3 (stars), where ν = 0. A linear fit describes the lines as

ω1 = −0.23830
(
z0/
√
η
)2.0705

(solid line) and ω1 = −0.090282
(
z0/
√
η
)2.0926

(dashed line) respectively, which compare favourably to the predicted (6.125).
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Figure 6.15: Change in oscillation rate plotted against the log of z0/
√
η for

fixed η and varied z0. Runs are performed for η = 10−2 (black), η = 3× 10−3

(blue) and η = 10−3 (red), where ν = 0. The dotted line corresponds to a

decrease in decay rate ω1 ∼ −z2
0/η as predicted by equation (6.125).

We note, however, that we have not accounted for the lower change in

decay rates found for lower resistivity.

For large axial, pressure or viscous effects the oscillatory modes are sup-

pressed and for that reason we turn our focus to the maximum reconnection

rate. We describe the maximum reconnection rate in 2.5D by

ψt(0, t) = ηJz(0, t), (6.126)

or in other words the reconnection rate is proportional to the maximum axial

current through the origin (e.g. Effenberger and Craig, 2016). Note, in 3D

the reconnection rate with our set up is usually quantified by
∫
Ez(0, 0, z) dz

(Schindler et al., 1988; Thurgood et al., 2018).

We depict the maximum reconnection rate against resistivity for the cases

ν = 0.01 and ν = 0.01η in Fig. 6.16 and we observe that viscous effects reduce

the maximum reconnection rate.

We analytically predicted that a QSL-type axial field would stall recon-

nection, while a 3D null-type field would not be able to, which we test using



137

numerical methods. However, our linearised system cannot handle high pres-

sure or axial terms numerically. Accordingly, we use a full nonlinear code,

which McClymont and Craig (1996) previously used to show that a constant

axial magnetic field and/or pressure effects act to stall fast reconnection. Since

those authors have already shown numerically that pressure stalls reconnec-

tion, we do not investigate large pressure effects numerically here. We instead

focus on axial effects and compare a QSL-type configuration to a 3D null-type

configuration.

We use a Crank-Nicolson finite difference method (Potter, 1973) with the

initial conditions

ψ(0) =
1

µ2
sin(µx) sin(µy) + 0.03

(
1− x2

) (
1− y2

)
, (6.127)

Z(0) =

√
2

µ2
sin2(µx) sin2(µy) + z2

0 , (6.128)

v(0) =0, (6.129)

to replicate the equilibrium magnetic field profiles (6.28). As Figure 6.17

indicates, as we increase z0 the reconnection rate is increasingly stalled (as

previously shown by McClymont and Craig (1996)), however when we increase

the axial field strength µ, the reconnection rate does not significantly stall and

is only marginally decreased, as depicted in Figure 6.18.

We conclude that we have provided significant analytical and numerical

evidence to suggest that fast reconnection will not occur if we use an initial

QSL geometry. However, fast magnetic reconnection will persist if we use a

3D null point initial geometry, at least for a purely resistive plasma.

6.5 Conclusions

Our presentation has shown how the original linear reconnection model (Craig

and McClymont, 1991; Hassam, 1992) has been generalised to incorporate

viscous, axial, pressure and collisionless effects. Viscosity, analogously to re-

sistivity, acts as a diffusive term increasing the energy release rate. Viscous
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Figure 6.16: Maximum current at the origin vs. resistivity. The solid line is ν =

0.0001η and the dashed line is ν = 0.01. We observe an increased reduction of

the reconnection rate ηJ |(0,0) as viscous effects increasingly dominate resistive

effects.
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Figure 6.17: Maximum current vs. resistivity for z0 = 0 (solid) and z0 = 0.3

(dashed), where µ = 0. We observe an increased reduction of the reconnection

rate ηJ |(0,0) as the strength of the QSL-type axial field increases.
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Figure 6.18: Maximum current vs. resistivity for µ = 0 (crosses) and µ =

0.3 (circles) where z0 = 0. We do not observe any significant reduction of

the reconnection rate ηJ |(0,0) as the strength of the 3D null-type axial field

increases.

effects increase the length scale and thus increase the oscillation frequency.

Gas pressure opposes resistive and viscous dissipation. While gas pressure can

overwhelm resistive dissipation in the solar corona, gas pressure will not be

able to significantly stall viscous dissipation.

Collisionless effects, such as the Hall effect or electron inertia, reduce the

length scale and thus the oscillation frequency. Since collisionless effects are

not diffusive, they only influence the amount of Ohmic heating, which will

increase due to the increased current. Therefore, the Hall and electron inertia

terms will increase the decay rate. These effects have been demonstrated else-

where in the literature (Craig and Litvinenko, 2008; Senanayake and Craig,

2006b; Senanayake, 2007; McClements et al., 2004; McClements and Thya-

garaja, 2004).

For large viscous contributions, we have shown that increasing viscosity

stalls reconnection. Since the dimensionless viscosity is much larger than the

dimensionless resistivity in the solar corona, the rate of viscous dissipation can

be considered fast. Furthermore, Craig et al. (2005) demonstrated the fast
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viscous dissipation would last for roughly one Alfvén time.

We have provided evidence that fast reconnection is only possible in the

presence of a null point. Axial terms oppose dissipation and will overwhelm

fast energy release if the dimensionless conditions (6.114) or (6.116) are met.

Consequently, for a QSL geometry, axial magnetic fields of even moderate size

stall resistive dissipation and reconnection. However for axial effects to stall

reconnection with a 3D null point requires a very large axial magnetic field

Bz ∼ η−1/2. Null points have been well established as an attractor for MHD

waves (see McLaughlin et al., 2011, for a review). Without a null point in the

QSL-type domain, the flux gets reconnected at a slow rate.

In addition to the modifications we have considered there are more avenues

for generalisations of linear reconnection. We note that there are many more

solutions to the Grad-Shafranov equation than those we have considered here,

and thus many more possible 2.5D geometries for reconnection. However, we

expect that the key reconnection scalings are controlled by the local structure

of the velocity and magnetic fields in the vicinity of the reconnection site.

Hence, we expect our results to remain valid for other global reconnection

solutions.

Finally, our linear system breaks down for larger scale energy perturbations,

in which a nonlinear model is needed (e.g. Ofman et al., 1993; McClymont and

Craig, 1996; McLaughlin et al., 2009). Thurgood et al. (2019) found that in the

nonlinear case, the oscillation period was very weakly dependent on resistivity

but strongly dependent on the amount of free energy in the system, a factor

that does not control the linear decay or oscillations at all. Furthermore, in

extending linear reconnection to 3D, axial magnetic pressure gradients become

the dominant stalling mechanism (Thurgood et al., 2018). We expect, based on

the results presented here, that viscosity could significantly limit this stalling

effect. Incorporating viscous, pressure and 3D effects into a full nonlinear

simulation is an avenue for further research.



Chapter 7

Conclusion

7.1 Summary

Purely resistive magnetic reconnection explains how vast magnitudes of mag-

netic energy are released in the solar corona, but predicts energy release rates

that are too slow to match observations of solar flares. This discrepancy is the

unresolved problem that has motivated this thesis.

The underlying problem that motivated this thesis is that purely resistive

magnetic reconnection predicts energy release rates too slow to match obser-

vations of solar flares. To this end, we have analysed some of the ways that

non-ideal effects, namely viscosity and the Hall effect, modify reconnection

models.

We began by reviewing the basic idea of magnetic reconnection and the so-

lar flare problem. We described the Magnetohydrodynamic (MHD) equations

and the requirements for breaking the flux frozen-in condition. We introduced

the Sweet-Parker current sheet, the Imshennik and Syrovatskǐi (1967) solution

for current sheet formation (in a compressible plasma) and the Forbes (1982)

one-dimensional nonlinear model for unsteady reconnection.

In Chapter 3, we searched for the length scale of a steadily reconnect-

ing visco-resistive current sheet. We investigated two approaches: magnetic

annihilation and a quasi-one-dimensional series expansion of a current sheet.
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Hence, we reviewed earlier flux pile-up models, namely the purely resistive

Sonnerup and Priest (1975) solution, Gratton et al. (1990) and Besser et al.

(1990)’s visco-resistive annihilation solutions, and the Craig and Henton (1995)

reconnective annihilation solution. We considered why the visco-resistive length

scale appeared in some of these solutions, yet not in others. In other words, we

wanted to determine whether a single visco-resistive current layer was formed

or whether there were separate viscous and resistive layers. We showed, using

a dimensional analysis of the Priest et al. (2000) magnetic annihilation solu-

tion, that the emergence of a visco-resistive is entirely dependent on the choice

of inflow velocity profile.

Furthermore, we considered a series expansion method (Priest and Cowley,

1975) that employs a quasi-one-dimensional Harris current sheet (Biskamp,

1986; Jamitzky and Scholer, 1995). Litvinenko (2009) extended this expansion

to include the Hall effect. We employed the series expansion to find an exact

visco-resistive length scale, using not only a Harris sheet, but also a Gaussian

profile and a Dawson profile.

We concluded that the presence of a VR length scale in reconnection is

determined by the form of the inflow velocity vx(x, 0). If nonlinear terms

are present in the inflow velocity profile a VR length scale will be present

regardless of how small these nonlinear terms are. Thus we postulated that

the Park et al. (1984) scale is a fundamental length scale that is only invalid

for a limited range of particular inflow velocity profiles.

In Chapter 4, we presented a self-similar solution for current sheet for-

mation at a magnetic neutral line in incompressible Hall MHD. This solution

generalises the Litvinenko (2007) solution by considering a general set of initial

conditions. We used a mechanical analogue to generate a criterion for which

initial conditions will lead to collapse. We then used an asymptotic analysis to

determine an approximate solution, which we employed to find the singularity

time. We verified our analytical prediction with a numerical run. Finally, we

generalised the self-similar solution to incorporate resistive, viscous and elec-
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tron inertia terms. Later researchers (Janda, 2018; Brizard, 2019) would build

on our asymptotic solution to find an exact solution and an exact singularity

time using the Jacobi and Weierstrass elliptic functions.

In Chapter 5, we examined the linear, oscillatory Craig and McClymont

(1991) reconnection solution. In this model, we considered a static X-point

with a small perturbation. Craig and McClymont (1991) showed this linear

solution could be fast, with a reconnection rate ∼ | ln η|−1 in the purely resis-

tive regime. We reviewed the three phases of linear reconnection: an initial

implosion (Craig and Watson, 1992), the oscillatory phase, and the long-time

tail (Hassam, 1992). The oscillatory phase is where the bulk of the energy is

lost. We considered azimuthal modes (Craig and McClymont, 1993), which

can make reconnection even faster, and higher order X-points (Craig, 1994)

which lead to slow reconnection. While linear reconnection initially appeared

promising as a means of fast reconnection, it is easily stalled by gas pressure,

axial effects (Craig and McClymont, 1993) or viscosity (Craig et al., 2005).

In Chapter 6, we considered a more general model of linear reconnection

that included viscous, pressure and axial effects, the Hall effect and electron

inertia. We attempted to quantify the role of each effect using a dimensional

argument backed up by numerical simulation results. Promisingly, we found, in

accordance with previous studies (Armstrong et al., 2011), that viscosity slows

reconnection yet increases the amount of energy release through dissipation.

Pressure and axial effects act to oppose both reconnection and dissipation. Gas

pressure can easily overwhelm reconnection and resistive dissipation, but not

viscous dissipation. We considered two axial fields in 2.5D: one that emulated

a Quasi-Separatrix Layer (QSL) and the other emulating a 3D null point. We

found that the field emulating a QSL could easily stall reconnection even for

a small axial field, but the axial field emulating a 3D null point would have to

be very large ∼ η−1/2 in order to stall reconnection.
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7.2 Suggestions for Future Work

The work in our thesis could be extended in several ways. Firstly, our visco-

resistive series solution of Chapter 3 could be extended to include the Hall

effect (e.g. Litvinenko, 2009). Furthermore, it is not entirely clear why our

length scale initially decreases, and thus our reconnection rate increases, when

we increase viscosity in Fig. 3.6.

Our work in Chapter 4 has already been built upon. Janda (2018) and

Brizard (2019) have found exact solutions for equation (4.89) in terms of elliptic

functions. By extension the self-similar system (4.80)-(4.84) can be solved for

a general inflow planar velocity γ(t). This work could be further expanded by

including, for example, compressible or 3D effects.

The most logical extension of the linear reconnection model, described in

Chapter 6, is to create a full analytical 3D model. The development of a full

analytical 3D model would allow us to compare a QSL with a 3D null point

site. This would mean that we could verify whether a null point is indeed

required for fast reconnection. Furthermore, we could incorporate viscous,

pressure and axial effects into a non-linear simulation of a perturbed X-point,

such as the McClymont and Craig (1996) simulation.

Another possible avenue of research is to incorporate the effects of sec-

ondary islands, which have been shown to speed up Sweet-Parker reconnection

(Cassak et al., 2009). Secondary islands are a promising area of active research,

however it is nontrivial to expand our work to incorporate these effects.
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