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Abstract

The formation of a current sheet in a weakly collisional plasma can be modelled as a finite-time singularity
solution of magnetohydrodynamic equations. We use an exact self-similar solution to confirm and generalise
a previous finding that, in sharp contrast to two-dimensional solutions in standard MHD, a finite-time
collapse to a current sheet can occur in Hall MHD. We derive a criterion for the finite-time singularity in
terms of initial conditions, and we use an intermediate asymptotic solution for the evolution of an axial
magnetic field to obtain a general expression for the singularity formation time. We illustrate the analytical
results by numerical solutions.
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1. Introduction

The formation of finite-time singularities in fluids and plasmas has been a subject of much recent re-
search interest [1, 2]. The research is motivated by potential applications to laboratory and astrophysical
plasmas. In particular, Hall magnetohydrodynamics (MHD) is believed to provide a model for fast magnetic
reconnection in weakly collisional plasmas [3, 4], and finite-time singularity solutions of Hall MHD equations
can be used to describe the formation of reconnecting current sheets [5, 6].

Singularity formation models, which identify the current sheet formation with an explosive growth of the
electric current density at a magnetic neutral line, have been repeatedly used to describe the sheet formation
in standard MHD [7, 8, 9]. Exact analytical self-similar MHD solutions exhibit exponential growth of the
electric current density, and the exponential behaviour was confirmed by numerical simulations [9, 10].
Analytical arguments [11] also show that ideal incompressible MHD solutions near the neutral line should
evolve exponentially unless a singularity is driven by an imposed pressure.

In this paper we investigate a self-similar solution for current sheet formation in Hall MHD. We consider
a general set of initial conditions and derive a criterion for the formation of a finite-time singularity. The
new solution reduces to an exponentially evolving MHD solution in two dimensions upon setting the Hall
term to zero.

2. Formulation of the problem and self-similar solutions

The incompressible Hall MHD equations [12] in dimensionless form are given by the generalised Ohm’s
law

E + v × B = ηJ + di(J × B −∇pe), (1)
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the momentum equation
∂tv + (v · ∇)v = −∇p+ J × B + ν∇2v, (2)

the incompressibility equation
∇ · v = 0, (3)

and electromagnetic equations
∇ ·B = 0, (4)

J = ∇× B, (5)

∇× E = −∂tB. (6)

Here v is the plasma velocity, B is the magnetic field, J is the electric current density, E is the electric
field, p and pe are the total plasma pressure and electron pressure. The pressures p and pe are assumed
to be scalar [13]. The length and magnetic field are normalised by some reference values L and B0. The
velocity v is normalised by the Alfvén speed vA = B0/

√
4πρ, and time is normalised by the Alfvén time

tA = L/vA. The resistivity η and viscosity ν are assumed to be constant and are normalised by 4πLvA/c
2

and LvA respectively. The dimensionless parameter that quantifies the role of collisionless effects is the ion
skin depth di = c/(Lωpi), where the ion plasma frequency is ωpi = (4πne2/mi)

1/2. Here n is the number
density, e is the ion electric charge, mi is the ion mass, ρ = min is the mass density and c is the speed of
light.

In what follows, we solve the Hall MHD equations via similarity reduction and show that some initial
conditions lead to a finite time singularity. The Hall effect is manifested as the non-linear term diJ × B

in equation (1), which vanishes in standard MHD. Our self-similar solution reduces to an exponentially
evolving MHD solution in the limit di = 0.

We assume a 2 1

2
D model, in which all quantities are considered in three dimensions but there is no

dependence on the z co-ordinate (∂z = 0). The incompressibility equation (3) then dictates that

v(x, y, t) = ∇φ× ẑ +W ẑ. (7)

Similarly, to satisfy equation (4), we use the flux function ψ to represent the magnetic field:

B(x, y, t) = ∇ψ × ẑ + Zẑ. (8)

The pressure terms do not contribute to the z-components of equations (1) and (2). To eliminate the
pressure terms in the x and y components, we take the curl of those equations. Equations (1)-(6) simplify
to the following system:

∂tψ + [ψ, φ] = η∇2ψ + di[ψ,Z], (9)

∂tZ + [Z, φ] = [W,ψ] + η∇2Z + di[∇2ψ, ψ], (10)

∂tW + [W,φ] = [Z,ψ] + ν∇2W, (11)

∂t(∇2φ) + [∇2φ, φ] = [∇2ψ, ψ] + ν∇2(∇2φ), (12)

where the Poisson bracket notation is typified by [ψ, φ] = ∂xψ∂yφ− ∂yψ∂xφ.
We reduce the system of equations (9)-(12) to a system of ordinary differential equations that describe

a hyperbolic (X-point) planar magnetic field, driven by a stagnation-point flow:

ψ = α(t)x2 − β(t)y2 + 2η

∫

(α− β)dt, (13)

φ = −γ(t)xy. (14)

For the axial velocity W and magnetic field Z we assume

W = f(t)x2 + g(t)y2 + 2ν

∫

(f + g)dt, (15)
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Z = h(t)xy, (16)

where the functional form of the axial magnetic field corresponds to the well-known quadrupolar structure
in Hall magnetic reconnection [13, 14]. On substituting equations (13)-(16) into the system (9)-(12) we get

α̇− 2α(γ + dih) = 0, (17)

β̇ + 2β(γ + dih) = 0, (18)

ḟ − 2γf + 2αh = 0, (19)

ġ + 2γg + 2βh = 0, (20)

ḣ+ 4αg + 4βf = 0, (21)

where the dot represents differentiation with respect to dimensionless time. We recover a similarity reduction
in 2D MHD [9] by setting f = g = h = 0.

3. Collapse to a Current Sheet in Hall MHD

For a general set of initial conditions, α(0) = α0, β(0) = β0, γ(0) = γ0, f(0) = f0, g(0) = g0 and
h(0) = h0, integration of equations (17)-(21) yields

αβ = α0β0, (22)

α+ dif = (α0 + dif0) exp(2Γ), (23)

β − dig = (β0 − dig0) exp(−2Γ), (24)

h2 − 4fg = h2

0
− 4f0g0, (25)

where Γ =
∫ t

0
γ(t′) dt′. The solution of the system is known to exhibit a finite-time singularity for the

following initial conditions: α0 = β0 = 1, f0 = g0 = 0 [6]. Here we strengthen and generalise that result by
considering arbitrary initial conditions.

A finite-time collapse to a current sheet occurs if a finite-time singularity is present in the solution.
Specifically, if h(t) → ∞ as t → ts, then it follows from equations (17), (18) and (22) that, depending on
the sign of h, either α(t) → ∞, β(t) → 0 or α(t) → 0, β(t) → ∞ as t→ ts, which constitutes the collapse of
an initial magnetic X-point.

We obtain an equation for h(t) by differentiating equation (21) and using equations (17)-(20) and (22)-
(25). We get, after some algebra,

ḧ− 2d2

ih
3 − a2h = 0, (26)

where a2 is defined as
a2 = −2[4di(α0g0 − β0f0) − 8α0β0 + d2

i h
2

0
]. (27)

A singularity criterion can be obtained by using a mechanical analogy. Integration of equation (26) yields
an analogue of energy conservation:

1

2
ḣ2 = −U(h), (28)

where the quartic function

U(h) = −1

2
(d2

ih
4 + a2h2) +

1

2
(d2

i h
4

0 + a2h2

0) − 8(α0g0 + β0f0)
2 (29)

is analogous to potential energy. Hence we can interpret the solution of equation (26) as the position of a
particle in this potential.

The particle motion is bounded, and thus h(t) remains finite, if the following three conditions are
satisfied. First, U(h) has a local minimum. Second, h(t) does not reach the local maxima ±hmax of U(h),
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where h2
max = −a2/2d2

i . Third, at t = 0, h(0) = h0 lies between the maxima ±hmax. In other words,
h(t) does not escape the local potential well if these conditions are satisfied. Near the origin, we have
U(h) ≈ const − a2h2/2. To satisfy the first condition we must have a2 < 0. To satisfy the second condition
we require that ḣ2 ≤ 0 at the maxima, or equivalently that U(hmax) ≥ 0. After some algebra, we have

α0β0(α0 + dif0)(β0 − dig0) ≥ 0. (30)

The third condition means that h2

0
≤ h2

max, and so

di(α0g0 − β0f0) − 2α0β0 ≥ 0. (31)

Equation (31) is in fact a stronger condition than a2 < 0, and so we only have the last two conditions for the
solution h(t) to remain near the origin. If either equation (30) or equation (31) is not satisfied and di > 0,
the solution develops a finite-time singularity (or evolves exponentially if di = 0).

Thus the self-similar solution will not contain a finite-time singularity if the initial conditions α0, β0, f0
and g0 are such that equations (30) and (31) are satisfied. It is worth emphasising that these equations put
strong constraints on the initial conditions, needed to prevent a collapse. For an initial large-scale X-point
geometry of the planar magnetic field (α0 ≃ β0 ≃ 1 and di ≪ 1 in our dimensionless units), equations (30)
and (31) require the initial axial speed to be strongly super-Alfvénic, W ≃ d−1

i ≫ 1 for x ≃ y ≃ 1, which
makes the collapse virtually inevitable for any physically plausible initial condition.

Although equation (26) can be solved in terms of Jacobi elliptic functions, it is useful to approximate
the solution in terms of elementary functions. Assuming a2 > 0, we let each variable depend on a power
of τ = (ts − t) near the singularity, then let τ → 0. For large h, ḧ ≈ 2d2

ih
3, and so h is proportional to

±τ−1. It is then straightforward [6] to derive the singularity scalings for the other variables by balancing
the leading-order terms in equations (22)-(25): for instance, α ∼ τ−2 and β ∼ τ2 if h ∼ τ−1, describing the
behaviour of the self-similar solution near the singularity.

We now use asymptotic analysis to determine the singularity time ts, assuming a2 > 0. For small time,
(dih)

2 ≪ 1, and equation (26) simplifies to ḧ ≈ a2h, with a solution given by

h(t) ≈ h0 cosh(at) +
ḣ0

a
sinh(at), (32)

where h0 = h(0) and ḣ0 = −4(α0g0 + β0f0). Near the singularity, we integrate equation (26) and neglect
the integration constant since h→ ∞:

ḣ2 ≈ d2

i h
4 + a2h2. (33)

Consequently, near the singularity

h(t) ≈ 2a2k exp(at)

1 − (diak)2 exp(2at)
, (34)

where k is an integration constant. An intermediate asymptotic solution follows from equations (32) and
(34) by requiring that they coincide in the range a−1 < t < ts, which leads to the intermediate asymptotic
solution

h(t) ≈

[

h0 cosh(at) +
ḣ0

a
sinh(at)

]



1 − d2

i

16a2

(

h0 +
ḣ0

a

)2

exp(2at)





−1

, (35)

and so the singularity time ts in terms of the initial values is

ts =
1

2a
ln





16a2

d2

i

(

h0 +
ḣ0

a

)

−2


 . (36)

We illustrate the analytical results by plotting the numerical solutions of the system (17)-(21). There
are six variables in the system but only five equations, so we have to make an assumption for one of the
variables in order to solve the system. We choose γ(t) = const for consistency with previous studies [9, 10].
Figure 1 gives examples of both nonsingular and singular behaviour, determined by the initial conditions.
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Figure 1: Left: Plot of h(t) for the initial conditions α0 = β0 = 1, γ0 = 0.5, dif0 = −2, dig0 = 2 and dih0 = 10−4. Because the
initial conditions satisfy equations (30) and (31), no finite-time singularity is present, and h(t) oscillates about h = 0. Right:
Plot of h(t) for the initial conditions α0 = β0 = 1, γ0 = 0.5, dif0 = 2, dig0 = −2 and dih0 = 10−4. Equation (36) predicts the
singularity time ts = 1.809. The numerical solution also confirms that α(t) → ∞, β(t) → 0 as t → ts, which constitutes the
collapse of an initial magnetic X-point.

4. Discussion

In this paper we have presented a self-similar solution for current sheet formation at a magnetic neutral
line in incompressible Hall MHD. The solution complements the available exact steady solution for magnetic
merging in Hall MHD [14] and exhibits a finite-time singularity that describes the collapse to a current sheet.
While such collapse has been previously demonstrated for a particular choice of initial conditions [6], we have
significantly extended the earlier result by considering general initial conditions. Specifically, equations (30)
and (31) provide a new criterion for the finite-time singularity formation in terms of the initial conditions,
and equation (35) gives a new intermediate asymptotic solution for the evolution of an axial magnetic field.
The intermediate asymptotic solution yields an expression for the singularity formation time (equation (36)),
which generalises equation (46) in Ref. [6].

Equation (36) shows that the collapse time increases if the strength of the Hall term, quantified by the
ion skin depth di, decreases. In the limit di → 0, the singularity formation time ts → ∞, corresponding
to the absence of finite-time singularities in 2D MHD evolution [9, 10, 11]. We also illustrated both the
finite-time singularity criterion and the predicted collapse time numerically.

In the context of a general initial and boundary value problem, our solution can be considered as a
low-order Taylor expansion of the flux and stream functions at the origin. This implies that, for general
initial and boundary conditions, the solution only holds locally and breaks down before the singularity is
reached. Despite the limitations of the self-similar solution, the value of our calculation is that the formula
for the singularity formation time quantifies the role of the Hall effect and initial conditions in the current
sheet formation.

Our solution may be applicable in a weakly collisional plasma of the solar corona, where the reference
values of L = 109.5 cm, B0 = 102 G and n = 109 cm−3 yield the dimensionless ion skin depth di ≈ 10−6.5.
An explosive character of energy release in solar flares [3] can be explained by a rapid transition from slow
resistive reconnection to fast Hall reconnection in an evolving current sheet. Our solution models such rapid
transition as a singularity formation at time ts. Assuming a ∼ h0 ∼ 1, our solution predicts the transition
time ts ∼ 10 tA, where the Alfvén time tA = L/vA = 100.5 s in the corona. This estimate is consistent with
typical flare onset times and simulation results [15].
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