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Abstract 

Aim To quantify the ACE I/D and ACTN3 R577X (rs1815739) genetic variants in elite rugby 

athletes (rugby union and rugby league), compare genotype frequencies to a control cohort and 

between playing positions. Method The rugby athlete cohort (part of the RugbyGene project) 

consisted of 507 Caucasian male athletes, including 431 rugby union athletes that for some 

analyses were divided into backs and forwards and into specific positional groups: front five, back 

row, half backs, centers and back three. Controls were 710 Caucasian men and women. Real- time 

polymerase chain reaction of genomic DNA was used to determine genotypes and groups were 

compared using Chi-square and odds ratio (OR) statistics. Results There was no difference in ACE 

I/D genotype between groups. ACTN3 XX genotype tended to be underrepresented in rugby union 

backs (15.7%) compared to forwards (24.8%; P=0.06). Interestingly, the 69 back three players 

(wings and full backs) in rugby union included only six XX genotype individuals (8.7%), with the 

R allele more common in the back three (68.8%) than the controls (58.0%; χ2=6.672, P=0.04; 

OR=1.60) and forwards (47.5%; χ2=11.768, P=0.01; OR=2.00). Conclusions Association of 

ACTN3 R577X with playing position in elite rugby union athletes suggests inherited fatigue 

resistance is more prevalent in forwards while inherited sprint ability is more prevalent in backs, 

especially wings and full backs. These results also demonstrate the advantage of focusing genetic 

studies on a large cohort within a single sport instead of combining several sports with varied 

demands and athlete characteristics. 
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Introduction 

Rugby is an intermittent team sport comprised of two similar but differing codes, rugby league 

(RL) and rugby union (RU). Both codes consist of diverse playing positions, each with different 

physiological, anthropometric and technical attributes (7, 8, 19, 25) including two distinct sub-

groups in each code: forwards and backs. Recently, global positioning system (GPS) tracking and 

time-motion analysis have been used to estimate the physical demands of rugby athletes and 

compare forwards and backs during high-level match play (7, 19, 25). In RU, backs travelled 12% 

greater total distance (6545 m versus 5850 m), achieved maximum speeds 16% faster (30.4 km.h-

1 versus 26.3 km.h-1) and engaged in over four times more high-intensity running activities, as a 

proportion of total activity (7, 25) compared to forwards. These data suggest a more sprint-oriented 

metabolic demand in backs compared to forwards. Furthermore, due to the complexities of forward 

play, forwards performed sixfold more (9.9%) high-intensity static exertion activities (rucks, 

mauls, scrums and line-outs) than backs (1.6%) and spent 19.8% more time running above 80% 

of their maximal speed (7, 25, respectively). This implies that forwards, although often of higher 

body mass, (12) are more likely to benefit from fatigue-resistant physiological qualities than backs. 

Accordingly, Deutsch et al (8) showed that forwards had a notably higher work-to-rest ratio than 

backs (1:7 and 1:22, respectively). Given that the roles of backs and forwards differ significantly 

in terms of physiological demands, these differences may be reflected in distinct genetic 

characteristics (17). Elite RL athletes cover similar total distances (~7000 m versus ~5000 m; 

backs versus forwards, respectively) and have similar anthropometric characteristics to RU 

athletes (19). Players regularly transfer between RL and RU codes so investigating both codes 

(combined and separately) for their genetic characteristics is justified. 

 



 
 

The two most studied gene variants in exercise genomics (ACE I/D and ACTN3 R577X 

polymorphisms) have recently been considered in meta-analyses. Ma et al (21) reported that ACE 

II genotype was associated with physical performance (odds ratio (OR) 1.23), especially endurance 

performance (OR 1.35). Furthermore, ACTN3 RR genotype was associated with speed and power 

performance (OR 1.21; 21), supported elsewhere (2). More extensive information regarding ACE 

I/D and ACTN3 R577X polymorphisms is available (11, 24). Due to differences in physical 

characteristics between rugby athletes and the general population and the diverse physiologica l 

demands within rugby, these genetic markers could predispose athletes to success or specific roles 

at the elite level. 

 

One recent paper examined ACE I/D genotype frequency distribution in young, non-elite RU 

athletes. ACE I/D genotype frequencies did not differ between forwards and backs, with no control 

group included (5). The same group (4) also investigated ACTN3 R577X in 102 young male RU 

athletes and reported no association, despite some tendencies for the R allele to be more frequent 

in backs or subgroups of backs. Studying elite athletes would be better able to answer the question 

whether these genetic variants are associated with elite status and playing position in rugby. 

 

Therefore, the purpose of the present study was to investigate whether elite rugby athletes in the 

RugbyGene project (17) and a control group differed in terms of ACE I/D and ACTN3 R577X 

genotype distribution, and whether athletes in specialized playing positions similarly differed. It 

was hypothesized that the ACTN3 R allele and the ACE I allele would be more frequent in rugby 

athletes than controls. It was further hypothesized that ACTN3 XX and ACE II genotypes would 



 
 

be underrepresented in RU backs compared to forwards, due to differences in overall work-to-rest 

ratio and differing requirements for high maximum speed. 

Methods 

Participants 

Ethical approval was granted by Manchester Metropolitan University (MMU), University of 

Glasgow, University of Cape Town and Northampton University ethics committees and complies 

with the Declaration of Helsinki. As part of the RugbyGene project, elite Caucasian male rugby 

athletes (n=507; mean (standard deviation) height 1.85 (0.07) m, mass 101 (14) kg, age 29 (7) 

years) including 361 British, 87 South African, 36 Irish and 23 of other nationalities were recruited, 

having given written informed consent. Caucasian controls (61% male; n=710; height 1.73 (0.10) 

m, mass 74 (13) kg, age 29 (16) years) included 636 British, 69 South African, 5 Irish and six of 

other nationalities. Athletes were considered elite if they had competed regularly since 1995 in the 

highest professional league in the UK, Ireland or South Africa for RU and the highest professiona l 

league in the UK for RL. Of the RU athletes, 53.4% had competed at international level for a “High 

Performance Union” (Regulation 16, worldrugby.org) and 38.5% of RL had competed at 

international level. International status was confirmed as of 1 January 2015. Athletes were taller 

and heavier (p<0.0005) but not older (p=0.871) than controls. 

Procedures 

Sample collection 
Blood (~70% of all samples), saliva (~25%) or buccal swab samples (~5%) were obtained via the 

following protocols. Blood was drawn from a superficial forearm vein into an EDTA tube and 

stored in sterile tubes at -20°C until processing. Saliva samples were collected into Oragene DNA 

OG-500 collection tubes (DNA Genotek Inc., Ontario, Canada) according to the manufacture r’s 

protocol and stored at room temperature until processing. Sterile buccal swabs (Omni swab, 



 
 

Whatman, Springfield Mill, UK) were rubbed against the buccal mucosa of the cheek for 

approximately 30 s. Tips were ejected into sterile tubes and stored at -20°C until processing. 

DNA isolation & genotyping 
DNA isolation and genotyping were performed in the MMU, University of Glasgow, Univers ity 

of Cape Town (DNA isolation only) and University of Northampton laboratories. There are some 

differences between protocols summarized below; however, there was 100% agreement among 

duplicated samples genotyped in the three genotyping centers, i.e. Glasgow, Northampton and 

MMU laboratories. The majority of samples were processed and genotyped in the MMU 

laboratory. 

 

At MMU and Glasgow, DNA isolation was performed using the QIAamp DNA Blood Mini kit 

and standard spin column protocol, following the manufacturer’s instructions (Qiagen, West 

Sussex, UK). Briefly, 200 μL of whole blood/saliva, or one buccal swab, was lysed, incubated, the 

DNA washed and the eluate containing isolated DNA stored at 4°C. In Cape Town, DNA was 

isolated from whole blood using a different protocol.28 Briefly, samples were lysed, centrifuged, 

the DNA washed and samples stored at -20ºC. Genotyping of DNA isolated in Cape Town was 

performed in Glasgow. At Northampton, DNA was isolated from whole blood using Flexigene 

kits (Qiagen). Briefly, samples were lysed, DNA precipitated and washed, with samples stored at 

-20ºC. 

Genotyping 

Genotyping in the Glasgow laboratory was performed on ACTN3 (rs1815739) and an ACE tag 

SNP (rs4341) in perfect linkage disequilibrium with ACE I/D in Caucasians (15). Briefly, 10 μL 

Genotyping Master Mix (Applied Biosystems, Paisley, UK), 1 μL SNP-specific TaqMan assay 

(Applied Biosystems), 6 μL nuclease-free H2O and 3 μL DNA solution were added per well. In 



 
 

the Northampton laboratory, genotyping was performed for ACTN3 R577X (rs1815739) by 

combining 10 μL of Genotyping Master Mix, 8 μL H2O, 1 μL assay mix with 1 μL of purified 

DNA. In both laboratories, PCR was performed using a StepOnePlus real-time detector (Applied 

Biosystems). Briefly, denaturation began at 95°C for 10 min, with 40 cycles of incubation at 92°C 

for 15 s then annealing and extension at 60°C for 1 min. Initial analysis was performed using 

StepOnePlus software version 2.3 (Applied Biosystems). There was 100% agreement within 

duplicates of all samples. 

 

At MMU, samples were genotyped for ACTN3 R577X (rs1815739) by combining 5 μL 

Genotyping Master Mix, 4.3 μL H2O, 0.5 μL assay mix and 0.2 μL of purified DNA, for samples 

derived from blood and saliva. For DNA derived from buccal swabs, 5 μL Genotyping Master Mix 

was combined with 3.5 μL H2O, 0.5 μL assay mix and 1 μL DNA solution. Either a Chromo4 real-

time system (Bio-Rad, Hertfordshire, UK) or a StepOnePlus was used. Briefly, denaturation began 

at 95°C for 10 min, with 40 cycles of incubation at 92°C for 15 s then annealing and extension at 

60°C for 1 min. Initial genotyping analysis was performed using Opticon Monitor software version 

3.1 (Bio-Rad) or StepOnePlus software version 2.3. Duplicates of all samples were in 100% 

agreement. For ACE I/D at MMU, 5 μL of Genotyping Master Mix, 1.55 μL H2O, 0.9 μL of I and 

D allele-specific probes and 0.38 μL of ACE primer 111, 112, 113 (sequences below) were 

combined with 0.5 μL DNA solution per well for blood and saliva. For DNA derived from buccal 

cells, primer and probe volumes were identical but 0.05 μL H2O and 2 μL DNA solution were 

used. Similarly, in the Northampton laboratory, ACE I/D was genotyped by combining 11 μL of 

Genotyping Master Mix, 2 μL of I and D probes, 2 μL of ACE primer 111, 112, 113 and 4 μL 

DNA solution. Either a Chromo4 real-time system or a StepOnePlus was used. Briefly, there were 



 
 

50 cycles of denaturation at 92°C for 15 s then annealing and extension at 57°C for 1 min. Initia l 

analysis was performed using Opticon Monitor 3.1 software or StepOnePlus software version 2.3. 

Again, there was 100% agreement within duplicates of all samples. 

Primers and probes 

For rs1815739 and rs4341, the appropriate TaqMan assay was used (Applied Biosystems).  For 

the direct ACE I/D assay, three primers (150 nM each) and probes (VIC, 150 nM and FAM, 75 

nM; 20) were used; 

Primer ACE111: 5ˈ-CCCATCCTTTCTCCCATTTCTC-3ˈ 

Primer ACE112: 5ˈ -AGCTGGAATAAAATTGGCGAAAC-3ˈ 

Primer ACE113: 5ˈ -CCTCCCAAAGTGCTGGGATTA-3ˈ 

I Allele specific probe (VIC-ACE100): VIC-5ˈAGGCGTGATACAGTCA-3ˈ-MGB 

D Allele specific probe (FAM-ACE100): FAM-5ˈTGCTGCCTATACAGTCA-3ˈ-

MGB 

Positional groups 

To assess genotype and allele frequencies within the RU group, athletes were allocated to sub-

groups; forwards (props, hookers, locks, flankers, number eights) and backs (scrum halves, fly 

halves, centers, wings, full backs). Also, due to diverse physiological demands within RU (7, 25), 

athletes were further divided into positional groups according to their similar movement patterns  

(7) front five (props, hookers, locks), back row (flankers, number eights), half backs (scrum halves, 

fly halves), centers and back three (wings and full backs). Position-specific analysis was not 

performed for the RL cohort. 

Data analysis 

SPSS for Windows version 19 (SPSS Inc., Chicago, IL) software was used to conduct Pearson’s 

Chi-square (χ2) tests to compare genotype and allelic frequencies between athletes and controls, 



 
 

and between positional subgroups. Benjamini-Hochberg corrections were applied to control false 

discovery rate and corrected probability values are reported. Where appropriate, OR was 

calculated to estimate effect size. Alpha was set at 0.05. 

Results 

All genotype data for athletes and controls were in Hardy-Weinberg equilibrium. For ACE I/D, 

there were no differences between all athletes (RU and RL combined) and controls in genotype 

(χ2=1.117, P=0.83), between RU or RL and controls, nor between playing sub-groups for RU 

(Table 1). Furthermore, for ACTN3 R577X there were no genotype differences between controls 

and all athletes (χ2=1.645, P=0.44), RL (χ2=1.829, P=0.44) or RU (χ2=0.216, P=0.33). However, 

when considering RU playing position, the X allele was overrepresented in forwards (52.5%) 

compared to backs (37.8%, χ2=8.128, P=0.02; OR=1.49, 95%CI=1.13-1.96, P=0.004) and controls 

(42%, χ2=6.217, P=0.02; OR=1.25, 95%CI=1.02-1.54, P=0.033; Table 1 & Figure 1A). Similar ly, 

there was a tendency (P=0.023 before Benjamini-Hochberg correction) of the XX genotype to be 

overrepresented in forwards (24.8%) compared to backs (15.7%, χ2=5.193, P=0.08; OR=1.77, 

95%CI=1.09-2.89, P=0.022) and controls (18.3%, χ2=7.582, P=0.08), with no difference between 

backs and controls (χ2=3.043, p=0.37). 

 

Interestingly, the 69 back three athletes (wings and fullbacks) included only six individuals (8.7%) 

of XX genotype which differed from the forwards (24.8%; χ2=11.082, P=0.05; OR=3.46, 

95%CI=1.43-8.34, P=0.006) and tended to differ from the combined half backs and centers group 

(19.8%; χ2=4.151, P=0.08; OR=2.59, 95%CI=1.00-6.74, P=0.049). Likewise, the R allele 

distribution was greater in the back three (68.8%) than the controls (58.0%; χ2=6.672, P=0.02; 

OR=1.60, 95%CI=1.09-2.33, P=0.014), forwards (47.5%; χ2=11.768, P=0.01; OR=2.00, 



 
 

95%CI=1.34-2.99, P=0.0007) and the other backs (58.2%; χ2=4.173, P=0.05; OR=1.59, 

95%CI=1.02-2.48, P=0.042; (Figure 1 B). 

Discussion 

The present study is the first to show a genetic association with elite athlete status in rugby union. 

We found associations for the ACTN3 R577X polymorphism but not for ACE I/D, thus rejecting 

our hypotheses regarding ACE I/D. Furthermore, no difference was observed for the ACTN3 

R577X genotype or allele distribution between all athletes and controls, thus rejecting the 

hypothesis that differences would exist between non-athletes and all players as a single cohort. 

Similarly, there were no differences between the RU, RL and control groups when playing position 

was not considered. However, as hypothesized, in RU backs compared to forwards there was a 

lower proportion of XX genotype and X allele, which probably reflects the greater need for speed 

generation in backs and more sustained activity in forwards. The small cohort of RL athletes means 

that comparisons between playing positions are not feasible until the cohort increases substantia l ly. 

 

ACTN3 R577X 

The most remarkable finding of the present study was the low frequency of the XX genotype 

among the back three RU athletes (8.7%), approaching although not as low as the frequency 

observed in elite sprinters (23, 29). The XX genotype is present in ~18% of Caucasians (Table 1) 

and indicates absence of the α-actinin-3 protein (3, 22). Absence of α-actinin-3, a protein almost 

exclusively expressed in fast twitch skeletal muscle fibers, could hinder back three (wing and full 

back) sprint ability. R allele carriers have a greater proportion of type II and IIx fibers and larger 

relative surface area per IIx fiber than XX carriers (1, 6, 28). Furthermore, Seto et al (27) recently 

showed the likely mechanism for this genotype-phenotype association is via the calcineurin muscle 



 
 

fiber remodeling pathway. They found greater calcineurin activity (which induces slow myogenic 

programming and a shift towards oxidative phenotype) in α-actinin-3 knockout mice (KO) and 

humans (ACTN3 577XX genotype) due to preferential binding of α-actinin-2 (upregulated in the 

absence of α-actinin-3) to the fast fiber-specific calsarcin-2 (an inhibitor of calcineurin). This could 

explain the advantage of R allele carriers over α-actinin-3 deficient XX individuals for high 

velocity contractions – particularly important for back three RU players. While backs and forwards 

previously showed similar fiber type proportions (18), these older data are arguably not relevant 

to modern rugby athletes, given their changed physical characteristics in recent years (12). Skeletal 

muscle fiber type proportions are unknown in contemporary elite RU athletes who now compete 

in a more popular, fully professional sport and complete much higher training loads than 

previously. Recent in vivo data also show that R allele carriers exhibit greater muscle volume and 

maximal power output (9, 16). These data, plus evidence that type II fibers are larger and more 

powerful than type I (13), suggest the R allele would benefit back three rugby athletes for muscle 

volume, power and fast fiber characteristics - which supports our findings (Table 1 and Figure 1). 

 

Arguably, the higher propensity for aerobic enzyme activity (porin, COX IV, hexokinase, citrate 

synthase, succinate dehydrogenase and β-hydroxyacyl CoA dehydrogenase; 26, 27) and greater 

force recovery after fatigue observed in α-actinin-3 deficient mice (26), could indicate that XX 

genotype humans might have a greater capacity for recovery from fatiguing exercise - a trait which 

would benefit forwards with their more sustained match play intensity and necessity for quick 

recovery. The shorter rest periods for forwards compared with backs (work to rest ratios 1:7.4 and 

1:21.8, respectively; 8) indicates that greater fatigue resistance would be particularly beneficial for 

forwards. Moreover, the greater calcineurin activity in XX homozygote humans and approximate ly 



 
 

threefold increase in calcineurin activity and distance ran after endurance training in KO mice (27), 

further support the notion that forwards would have a greater fatigue resistance, especially with 

exposure to extensive training. These data are consistent with our observation that forwards exhibit 

higher XX genotype and lower R allele frequencies than backs and controls (Table 1). 

 

When considering many sports simultaneously, team sport athlete status showed no association 

with ACTN3 R577X genotype (10). However, due to a relatively small number of athletes (205) 

with mixed status (56.6% elite) from a range of sports (ice hockey, handball, soccer, etc.), that is 

perhaps not surprising. While combining cohorts from different sports can boost sample size and 

theoretically increase statistical power, if an association does not exist in all sports, or even in all 

athletes within a particular sport due to positional differences, one would be less likely to detect 

an association. The positional differences identified within the present study demonstrate the value 

of studying a large sample from a single sport. 

 

ACE I/D 

The current study reports no difference between rugby athletes and controls or any positiona l 

subgroups for ACE I/D. This lack of association contrasts with a recent meta-analysis where the 

ACE I allele was associated with physical performance (21). However, associations of ACE I/D 

are controversial. No associations were reported in other isolated team sport data for elite European 

soccer (14) and non-elite RU (5). These data, in conjunction with our findings, suggest that ACE 

I/D plays little role in performance of team sport athletes, probably due to the mixed metabolic 

nature of team sports. ACE I/D genotype-athlete phenotype associations are more likely to exist in 

specialized endurance athletes (24). 



 
 

 

Effect size and future applications 

Odds ratios were calculated to estimate the likelihood that individuals with the advantageous 

genotype/allele become an elite RU athlete in a specific position. The ACTN3 XX genotype was 

almost twice (OR=1.77) as common in forwards than backs, which suggests α-actinin-3 deficient 

individuals are more suited to forward play. Furthermore, forwards were over three times 

(OR=3.46) more likely to be XX genotype than the back three athletes, while the remaining backs 

(centers and halves) were over twice as likely to show the α-actinin-3 deficient genotype than the 

back three (OR=2.59). These data suggest the ACTN3 R577X polymorphism shows potential for 

position-specific talent identification within RU when combined with other data in the future. 

 

While the present cohort size is large compared to previous single sport genetic analyses, when 

the cohort was subdivided into playing position, the numbers were reduced so enlargement of our 

cohort and replication would be welcome. Accordingly, we continue to recruit elite RU and RL 

players in the RugbyGene project, so will steadily become better able to investigate genetic aspects 

of specific demands within rugby. To conclude, the present study revealed position-specif ic 

genetic variation in elite RU athletes for ACTN3 R577X. The R allele was an advantage for backs, 

particularly the back three. Moreover, the current results do not support ACE I/D as a genetic 

marker for rugby performance, showing no differences between athletes and controls or positiona l 

subgroups. This study demonstrates the value of single sport cohorts and the need for large sample 

sizes when conducting gene association studies in sport. Future objectives of the RugbyGene 

project within the broader Athlome project include investigating whether genetic variants 



 
 

associated with excellence in other sports are similarly associated in the multifaceted sport of 

rugby. 
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Table 1 Genotype and allele distribution of controls and athletes divided into positional sub-groups (for RU only), presented as genotype/alle le 
counts followed by percentage in parentheses. RL, rugby league and RU, rugby union. * Different from forwards. # Different from the Back 3. 

Genotype All athletes RL athletes RU athletes Controls Forwards Front 5 Back row Backs Half Backs Centers Back 3 

ACE            

      II 108 (21.4) 18 (21.7) 92 (21.5) 113 (19.8) 49 (20.0) 36 (22.1) 13 (15.9) 43 (23.6) 14 (20.3) 14 (31.1) 15 (22.1) 

      ID 251 (49.7) 39 (47.0) 214 (50.1) 286 (50.0) 129 (52.7) 86 (52.8) 43 (52.4) 85 (46.7) 33 (47.8) 17 (37.8) 35 (51.5) 

      DD 146 (28.9) 26 (31.3) 121 (28.3) 172 (30.2) 67 (27.3) 41 (25.2) 26 (31.7) 54 (29.7) 22 (31.9) 14 (31.1) 18 (26.5) 

Total 505 83 427 572 245 163 82 182 69 45 68 

      I allele 467 (46.3) 75 (45.2) 398 (46.6) 512 (44.7) 227 (46.3) 158 (48.5) 69 (42.1) 171 (47.0) 61 (44.2) 45 (50.0) 65 (47.8) 

      D allele 543 (53.7) 91 (54.8) 456 (53.4) 630 (55.3) 263 (53.7) 168 (51.5) 95 (57.9) 193 (53.0) 77 (55.8) 45 (50.0) 71 (52.2) 

ACTN3            

      XX 104 (20.5) 15 (18.1) 90 (20.9) 130 (18.3) 61 (24.8) 39 (23.8) 22 (26.8) 29 (15.7) 12 (17.4) 11 (23.4) *6 (8.7) 

      RX 234 (46.2) 45 (54.2) 194 (45.0) 337 (47.5) 112 (45.5) 71 (43.3) 41 (50.0) 82 (44.3) 29 (42.0) 22 (46.8) 31 (44.9) 

      RR 169 (33.3) 23 (27.7) 147 (34.1) #243 (34.2) #73 (29.7) 54 (32.9) 19 (23.2) 74 (40.0) 28 (40.6) 14 (29.8) 32 (46.4) 

Total 507 83 431 710 246 164 82 185 69 47 69 

      X allele 442 (43.5) 75 (45.2) 374 (43.4) *597 (42.0) 234 (47.6) 149 (45.4) 85 (51.8) *140 (37.8) 53 (38.4) 44 (46.8) 43 (31.2) 

      R allele 572 (56.5) 91 (54.8) 488 (56.6) #823 (58.0) 258 (52.4) 179 (54.6) 79 (48.2) 230 (62.2) 85 (61.6) 50 (53.2) *95 (68.8) 
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