122 research outputs found

    Dynamics of direct inter-pack encounters in endangered African wild dogs

    Get PDF
    Aggressive encounters may have important life history consequences due to the potential for injury and death, disease transmission, dispersal opportunities or exclusion from key areas of the home range. Despite this, little is known of their detailed dynamics, mainly due to the difficulties of directly observing encounters in detail. Here, we describe detailed spatial dynamics of inter-pack encounters in African wild dogs (Lycaon pictus), using data from custom-built high-resolution GPS collars in 11 free-ranging packs. On average, each pack encountered another pack approximately every 7 weeks and met each neighbour twice each year. Surprisingly, intruders were more likely to win encounters (winning 78.6% of encounters by remaining closer to the site in the short term). However, intruders did tend to move farther than residents toward their own range core in the short-term (1 h) post-encounter, and if this were used to indicate losing an encounter, then the majority (73.3%) of encounters were won by residents. Surprisingly, relative pack size had little effect on encounter outcome, and injuries were rare (<15% of encounters). These results highlight the difficulty of remotely scoring encounters involving mobile participants away from static defendable food resources. Although inter-pack range overlap was reduced following an encounter, encounter outcome did not seem to drive this, as both packs shifted their ranges post-encounter. Our results indicate that inter-pack encounters may be lower risk than previously suggested and do not appear to influence long-term movement and ranging

    Products of cells from gliomas: IX. Evidence that two fundamentally different mechanisms change extracellular matrix expression by gliomas

    Full text link
    Four human astrocytic gliomas of high grade of malignancy were each evaluated in tissue and in vitro for percentages of cells expressing glial fibrillary acidic protein (GFAP), collagen type IV, laminin and fibronectin assessed by immunofluorescence with counterstaining of nuclear DNA. Percentages of cells with reticulin and cells binding fluorescein-labeled Ulex europaeus agglutinin were also assessed. In tissue, each extracellular matrix (ECM) component was associated with cells in the walls of abnormal proliferations of glioma vessels, and all four tumors had the same staining pattern. Two strikingly different patterns of conversion of gene product expression emerged during in vitro cultivation. (1). In the most common pattern, percentages of all six markers consistently shifted toward the exact phenotype of mesenchymal cells in abnormal vascular proliferations: increased reticulin, collagen type IV, laminin and fibronectin; markedly decreased glial marker GFAP and absent endothelial marker Ulex europaeus agglutinin. The simplest explanation of this constellation of changes coordinated toward expression of vascular ECM markers is that primary glioma cell cultures are overgrown by mesenchymal cells from the abnormal vascular proliferations of the original glioma. These cell cultures were tested for in situ hybridization (ISH) signals of chromosomes 7 and 10. Cells from one glioma had diploid signals. Cells from the other glioma had aneuploid signals indicating they were neoplastic; however, their signals reflected different numerical chromosomal aberrations than those common to neoplastic glia. (2). The second pattern was different. Cells with ISH chromosomal signals of neoplastic glia retained GFAP, and gained collagen type IV. Their laminin and fibronectin diminished, but persisted among a lower percentage of cells. Cloning and double immunofluorescence confirmed the presence of individual cells with glial and mesenchymal markers. A cell expressing GFAP in addition to either fibronectin, reticulin or collagen type IV is not a known constituent of glioblastoma tissue. This provides evidence of a second mechanism of conversion of gene expression in gliomas.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45382/1/11060_2005_Article_BF01052843.pd

    Constitutively elevated levels of SOCS1 suppress innate responses in DF-1 immortalised chicken fibroblast cells.

    Get PDF
    The spontaneously immortalised DF-1 cell line is rapidly replacing its progenitor primary chicken embryo fibroblasts (CEFs) for studies on avian viruses such as avian influenza but no comprehensive study has as yet been reported comparing their innate immunity phenotypes. We conducted microarray analyses of DF-1 and CEFs, under both normal and stimulated conditions using chicken interferon-α (chIFN-α) and the attenuated infectious bursal disease virus vaccine strain PBG98. We found that DF-1 have an attenuated innate response compared to CEFs. Basal expression levels of Suppressor of Cytokine Signalling 1 (chSOCS1), a negative regulator of cytokine signalling in mammals, are 16-fold higher in DF-1 than in CEFs. The chSOCS1 “SOCS box” domain (which in mammals, interacts with an E3 ubiquitin ligase complex) is not essential for the inhibition of cytokine-induced JAK/STAT signalling activation in DF-1. Overexpression of SOCS1 in chIFN-α-stimulated DF-1 led to a relative decrease in expression of interferon-stimulated genes (ISGs; MX1 and IFIT5) and increased viral yield in response to PBG98 infection. Conversely, knockdown of SOCS1 enhanced induction of ISGs and reduced viral yield in chIFN-α-stimulated DF-1. Consequently, SOCS1 reduces induction of the IFN signalling pathway in chicken cells and can potentiate virus replication

    Diffuse glioma growth: a guerilla war

    Get PDF
    In contrast to almost all other brain tumors, diffuse gliomas infiltrate extensively in the neuropil. This growth pattern is a major factor in therapeutic failure. Diffuse infiltrative glioma cells show some similarities with guerilla warriors. Histopathologically, the tumor cells tend to invade individually or in small groups in between the dense network of neuronal and glial cell processes. Meanwhile, in large areas of diffuse gliomas the tumor cells abuse pre-existent “supply lines” for oxygen and nutrients rather than constructing their own. Radiological visualization of the invasive front of diffuse gliomas is difficult. Although the knowledge about migration of (tumor)cells is rapidly increasing, the exact molecular mechanisms underlying infiltration of glioma cells in the neuropil have not yet been elucidated. As the efficacy of conventional methods to fight diffuse infiltrative glioma cells is limited, a more targeted (“search & destroy”) tactic may be needed for these tumors. Hopefully, the study of original human glioma tissue and of genotypically and phenotypically relevant glioma models will soon provide information about the Achilles heel of diffuse infiltrative glioma cells that can be used for more effective therapeutic strategies

    Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    Get PDF
    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Molecular variability in Amerindians: widespread but uneven information

    Full text link

    The importance of the altricial – precocial spectrum for social complexity in mammals and birds:A review

    Get PDF
    Various types of long-term stable relationships that individuals uphold, including cooperation and competition between group members, define social complexity in vertebrates. Numerous life history, physiological and cognitive traits have been shown to affect, or to be affected by, such social relationships. As such, differences in developmental modes, i.e. the ‘altricial-precocial’ spectrum, may play an important role in understanding the interspecific variation in occurrence of social interactions, but to what extent this is the case is unclear because the role of the developmental mode has not been studied directly in across-species studies of sociality. In other words, although there are studies on the effects of developmental mode on brain size, on the effects of brain size on cognition, and on the effects of cognition on social complexity, there are no studies directly investigating the link between developmental mode and social complexity. This is surprising because developmental differences play a significant role in the evolution of, for example, brain size, which is in turn considered an essential building block with respect to social complexity. Here, we compiled an overview of studies on various aspects of the complexity of social systems in altricial and precocial mammals and birds. Although systematic studies are scarce and do not allow for a quantitative comparison, we show that several forms of social relationships and cognitive abilities occur in species along the entire developmental spectrum. Based on the existing evidence it seems that differences in developmental modes play a minor role in whether or not individuals or species are able to meet the cognitive capabilities and requirements for maintaining complex social relationships. Given the scarcity of comparative studies and potential subtle differences, however, we suggest that future studies should consider developmental differences to determine whether our finding is general or whether some of the vast variation in social complexity across species can be explained by developmental mode. This would allow a more detailed assessment of the relative importance of developmental mode in the evolution of vertebrate social systems
    corecore