1,319 research outputs found
The mechanics of trust: a framework for research and design
With an increasing number of technologies supporting transactions over distance and replacing traditional forms of interaction, designing for trust in mediated interactions has become a key concern for researchers in human computer interaction (HCI). While much of this research focuses on increasing users’ trust, we present a framework that shifts the perspective towards factors that support trustworthy behavior. In a second step, we analyze how the presence of these factors can be signalled. We argue that it is essential to take a systemic perspective for enabling well-placed trust and trustworthy behavior in the long term. For our analysis we draw on relevant research from sociology, economics, and psychology, as well as HCI. We identify contextual properties (motivation based on temporal, social, and institutional embeddedness) and the actor's intrinsic properties (ability, and motivation based on internalized norms and benevolence) that form the basis of trustworthy behavior. Our analysis provides a frame of reference for the design of studies on trust in technology-mediated interactions, as well as a guide for identifying trust requirements in design processes. We demonstrate the application of the framework in three scenarios: call centre interactions, B2C e-commerce, and voice-enabled on-line gaming
Charge Form Factor and Cluster Structure of Li Nucleus
The charge form factor of Li nucleus is considered on the basis of its
cluster structure. The charge density of Li is presented as a
superposition of two terms. One of them is a folded density and the second one
is a sum of He and the deuteron densities. Using the available
experimental data for He and deuteron charge form factors, a good
agreement of the calculations within the suggested scheme is obtained with the
experimental data for the charge form factor of Li, including those in
the region of large transferred momenta.Comment: 12 pages 5 figure
Sensing and interferometry, including design and characterisation of special optical fibres
This thesis presents my work in the area of optical fibre sensing, and optical fibre design and characterisation along with the interferometric and signal processing techniques that were developed along the way
Phenomenology of the Lense-Thirring effect in the Solar System
Recent years have seen increasing efforts to directly measure some aspects of
the general relativistic gravitomagnetic interaction in several astronomical
scenarios in the solar system. After briefly overviewing the concept of
gravitomagnetism from a theoretical point of view, we review the performed or
proposed attempts to detect the Lense-Thirring effect affecting the orbital
motions of natural and artificial bodies in the gravitational fields of the
Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of
the impact of several sources of systematic uncertainties of dynamical origin
to realistically elucidate the present and future perspectives in directly
measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in
Astrophysics and Space Science (ApSS). Some uncited references in the text
now correctly quoted. One reference added. A footnote adde
A Kinematically Complete Measurement of the Proton Structure Function F2 in the Resonance Region and Evaluation of Its Moments
We measured the inclusive electron-proton cross section in the nucleon
resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2
with the CLAS detector. The large acceptance of CLAS allowed for the first time
the measurement of the cross section in a large, contiguous two-dimensional
range of Q**2 and x, making it possible to perform an integration of the data
at fixed Q**2 over the whole significant x-interval. From these data we
extracted the structure function F2 and, by including other world data, we
studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate
higher twist contributions. The small statistical and systematic uncertainties
of the CLAS data allow a precise extraction of the higher twists and demand
significant improvements in theoretical predictions for a meaningful comparison
with new experimental results.Comment: revtex4 18 pp., 12 figure
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
Measurement of the photon-jet production differential cross section in collisions at \sqrt{s}=1.96~\TeV
We present measurements of the differential cross section dsigma/dpT_gamma
for the inclusive production of a photon in association with a b-quark jet for
photons with rapidities |y_gamma|< 1.0 and 30<pT_gamma <300 GeV, as well as for
photons with 1.5<|y_gamma|< 2.5 and 30< pT_gamma <200 GeV, where pT_gamma is
the photon transverse momentum. The b-quark jets are required to have pT>15 GeV
and rapidity |y_jet| < 1.5. The results are based on data corresponding to an
integrated luminosity of 8.7 fb^-1, recorded with the D0 detector at the
Fermilab Tevatron Collider at sqrt(s)=1.96 TeV. The measured cross
sections are compared with next-to-leading order perturbative QCD calculations
using different sets of parton distribution functions as well as to predictions
based on the kT-factorization QCD approach, and those from the Sherpa and
Pythia Monte Carlo event generators.Comment: 10 pages, 9 figures, submitted to Phys. Lett.
b-Jet Identification in the D0 Experiment
Algorithms distinguishing jets originating from b quarks from other jet
flavors are important tools in the physics program of the D0 experiment at the
Fermilab Tevatron p-pbar collider. This article describes the methods that have
been used to identify b-quark jets, exploiting in particular the long lifetimes
of b-flavored hadrons, and the calibration of the performance of these
algorithms based on collider data.Comment: submitted to Nuclear Instruments and Methods in Physics Research
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
Search for pair production of the scalar top quark in the electron-muon final state
We report the result of a search for the pair production of the lightest
supersymmetric partner of the top quark () in
collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron
collider corresponding to an integrated luminosity of 5.4 fb. The scalar
top quarks are assumed to decay into a quark, a charged lepton, and a
scalar neutrino (), and the search is performed in the electron
plus muon final state. No significant excess of events above the standard model
prediction is detected, and improved exclusion limits at the 95% C.L. are set
in the the (,) mass plane
- …
