720 research outputs found

    Mock galaxy catalogs using the quick particle mesh method

    Full text link
    Sophisticated analysis of modern large-scale structure surveys requires mock catalogs. Mock catalogs are used to optimize survey design, test reduction and analysis pipelines, make theoretical predictions for basic observables and propagate errors through complex analysis chains. We present a new method, which we call "quick particle mesh", for generating many large-volume, approximate mock catalogs at low computational cost. The method is based on using rapid, low-resolution particle mesh simulations that accurately reproduce the large-scale dark matter density field. Particles are sampled from the density field based on their local density such that they have N-point statistics nearly equivalent to the halos resolved in high-resolution simulations, creating a set of mock halos that can be populated using halo occupation methods to create galaxy mocks for a variety of possible target classes.Comment: 13 pages, 16 figures. Matches version accepted by MNRAS. Code available at http://github.com/mockFactor

    Tests of redshift-space distortions models in configuration space for the analysis of the BOSS final data release

    Get PDF
    Observations of redshift-space distortions in spectroscopic galaxy surveys offer an attractive method for observing the build-up of cosmological structure, which depends both on the expansion rate of the Universe and our theory of gravity. In preparation for analysis of redshift-space distortions from the Baryon Oscillation Spectroscopic Survey (BOSS) final data release we compare a number of analytic and phenomenological `streaming' models, specified in configuration space, to mock catalogs derived in different ways from several N-body simulations. The galaxies in each mock catalog have properties similar to those of the higher redshift galaxies measured by BOSS but differ in the details of how small-scale velocities and halo occupancy are determined. We find that all of the analytic models fit the simulations over a limited range of scales while failing at small scales. We discuss which models are most robust and on which scales they return reliable estimates of the rate of growth of structure: we find that models based on some form of resummation can fit our N-body data for BOSS-like galaxies above 30h130\,h^{-1}Mpc well enough to return unbiased parameter estimates.Comment: 12 pages, 11 figures, matches version accepted by MNRA

    Intentional left subclavian artery coverage during thoracic endovascular aortic repair for traumatic aortic injury

    Get PDF
    BackgroundThoracic endovascular aortic repair (TEVAR) is widely used for treatment of traumatic aortic injury (TAI). Stent graft coverage of the left subclavian artery (LSA) may be required in up to 40% of patients. We evaluated the long-term effects of intentional LSA coverage (LSAC) on symptoms and return to normal activity in TAI patients compared with a similarly treated group whose LSA was uncovered (LSAU).MethodsPatients were identified from a prospective institutional trauma registry between September 2005 and July 2012. TAI was confirmed using computed tomography angiography. The electronic medical records, angiograms, and computed tomography angiograms were reviewed in a retrospective fashion. In-person or telephone interviews were conducted using the SF-12v2 (Quality Metrics, Lincoln, RI) to assess quality of life. An additional questionnaire was used to assess specific LSA symptoms and the ability to return to normal activities. Data were analyzed by Spearman rank correlation and multiple linear and logistic regression analysis with appropriate transformations using SAS software (SAS Institute, Cary, NC).ResultsDuring the study period, 82 patients (57 men; mean age 40.5 ± 20 years, mean Injury Severity Score, 34 ± 10.0) underwent TEVAR for treatment of TAI. Among them, LSAC was used in 32 (39.5%) and LSAU in 50. A group of the LSAU patients (n = 22) served as matched controls in the analysis. We found no statistically significant difference in SF-12v2 physical health scores (ρ = −0.08; P = .62) between LSAC and LSAU patients. LSAC patients had slightly better mental health scores (ρ = 0.62; P = .037) than LSAU patients. LSAC patients did not have an increased likelihood of experiencing pain (ρ = −0.0056; P = .97), numbness (ρ = −0.12; P = .45), paresthesia (ρ = −0.11; P = .48), fatigue (ρ = −0.066; P = .69), or cramping (ρ = −0.12; P = .45). We found no difference between groups in the ability to return to activities. The mean follow-up time was 3.35 years. Six LSAC patients (19%) died during the follow-up period of unrelated causes.ConclusionsIntentional LSAC during TEVAR for TAI appears safe, without compromising mental or physical health outcomes. Furthermore, LSAC does not increase the long-term risk of upper extremity symptoms or impairment of normal activities

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring structure growth using passive galaxies

    Get PDF
    We explore the benefits of using a passively evolving population of galaxies to measure the evolution of the rate of structure growth between z=0.25 and z=0.65 by combining data from the SDSS-I/II and SDSS-III surveys. The large-scale linear bias of a population of dynamically passive galaxies, which we select from both surveys, is easily modeled. Knowing the bias evolution breaks degeneracies inherent to other methodologies, and decreases the uncertainty in measurements of the rate of structure growth and the normalization of the galaxy power-spectrum by up to a factor of two. If we translate our measurements into a constraint on sigma_8(z=0) assuming a concordance cosmological model and General Relativity (GR), we find that using a bias model improves our uncertainty by a factor of nearly 1.5. Our results are consistent with a flat Lambda Cold Dark Matter model and with GR.Comment: Accepted for publication in MNRAS (clarifications added, results and conclusions unchanged

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples

    Get PDF
    We explore the cosmological implications of the angle-averaged correlation function, ξ(s), and the clustering wedges, ξ⊥(s) and ξ∥(s), of the LOWZ and CMASS galaxy samples from Data Releases 10 and 11 of the Sloan Digital Sky Survey III (SDSS-III) Baryon Oscillation Spectroscopic Survey. Our results show no significant evidence for a deviation from the standard Λ cold dark matter model. The combination of the information from our clustering measurements with recent data from the cosmic microwave background is sufficient to constrain the curvature of the Universe to Ωk = 0.0010 ± 0.0029, the total neutrino mass to ∑mν < 0.23 eV (95 per cent confidence level), the effective number of relativistic species to Neff = 3.31 ± 0.27 and the dark energy equation of state to wDE = −1.051 ± 0.076. These limits are further improved by adding information from Type Ia supernovae and baryon acoustic oscillations from other samples. In particular, this data set combination is completely consistent with a time-independent dark energy equation of state, in which case we find wDE = −1.024 ± 0.052. We explore the constraints on the growth rate of cosmic structures assuming f(z) = Ωm(z)γ and obtain γ = 0.69 ± 0.15, consistent with the predictions of general relativity of γ = 0.55.Publisher PDFPeer reviewe

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : measuring DA and H at z = 0.57 from the baryon acoustic peak in the Data Release 9 spectroscopic Galaxy sample

    Get PDF
    We present measurements of the angular diameter distance to and Hubble parameter at z = 0.57 from the measurement of the baryon acoustic peak in the correlation of galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. Our analysis is based on a sample from Data Release 9 of 264 283 galaxies over 3275 square degrees in the redshift range 0.43 < z < 0.70. We use two different methods to provide robust measurement of the acoustic peak position across and along the line of sight in order to measure the cosmological distance scale. We find DA(0.57) = 1408 ± 45 Mpc and H(0.57) = 92.9 ± 7.8 km s−1 Mpc−1 for our fiducial value of the sound horizon. These results from the anisotropic fitting are fully consistent with the analysis of the spherically averaged acoustic peak position presented in Anderson et al. Our distance measurements are a close match to the predictions of the standard cosmological model featuring a cosmological constant and zero spatial curvature.Publisher PDFPeer reviewe

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling of the luminosity and colour dependence in the Data Release 10

    Get PDF
    We investigate the luminosity and colour dependence of clustering of CMASS galaxies in the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey Data Release 10, focusing on projected correlation functions of well-defined samples extracted from the full catalogue of ∼540 000 galaxies at z ∼ 0.5 covering about 6500 deg2. The halo occupation distribution framework is adopted to model the measurements on small and intermediate scales (from 0.02 to 60 h-1 Mpc), infer the connection of galaxies to dark matter haloes and interpret the observed trends. We find that luminous red galaxies in CMASS reside in massive haloes of mass M ∼ 1013–1014 h-1 M⊙ and more luminous galaxies are more clustered and hosted by more massive haloes. The strong small-scale clustering requires a fraction of these galaxies to be satellites in massive haloes, with the fraction at the level of 5–8 per cent and decreasing with luminosity. The characteristic mass of a halo hosting on average one satellite galaxy above a luminosity threshold is about a factor of 8.7 larger than that of a halo hosting a central galaxy above the same threshold. At a fixed luminosity, progressively redder galaxies are more strongly clustered on small scales, which can be explained by having a larger fraction of these galaxies in the form of satellites in massive haloes. Our clustering measurements on scales below 0.4 h-1 Mpc allow us to study the small-scale spatial distribution of satellites inside haloes. While the clustering of luminosity-threshold samples can be well described by a Navarro–Frenk–White profile, that of the reddest galaxies prefers a steeper or more concentrated profile. Finally, we also use galaxy samples of constant number density at different redshifts to study the evolution of luminous red galaxies, and find the clustering to be consistent with passive evolution in the redshift range of 0.5 ≲ z ≲ 0.6

    Enriched haloes at redshift z=2z=2 with no star-formation: Implications for accretion and wind scenarios

    Full text link
    [Abridged] In order to understand which process (e.g. galactic winds, cold accretion) is responsible for the cool (T~10^4 K) halo gas around galaxies, we embarked on a program to study the star-formation properties of galaxies selected by their MgII absorption signature in quasar spectra. Specifically, we searched for the H-alpha line emission from galaxies near very strong z=2 MgII absorbers (with rest-frame equivalent width EW>2 \AA) because these could be the sign-posts of outflows or inflows. Surprisingly, we detect H-alpha from only 4 hosts out of 20 sight-lines (and 2 out of the 19 HI-selected sight-lines), despite reaching a star-formation rate (SFR) sensitivity limit of 2.9 M/yr (5-sigma) for a Chabrier initial mass function. This low success rate is in contrast with our z=1 survey where we detected 66%\ (14/21) of the MgII hosts. Taking into account the difference in sensitivity between the two surveys, we should have been able to detect >11.4 of the 20 z=2 hosts whereas we found only 4 galaxies. Interestingly, all the z=2 detected hosts have observed SFR greater than 9 M/yr, well above our sensitivity limit, while at z=1 they all have SFR less than 9 M/yr, an evolution that is in good agreement with the evolution of the SFR main sequence. Moreover, we show that the z=2 undetected hosts are not hidden under the quasar continuum after stacking our data and that they also cannot be outside our surveyed area. Hence, strong MgII absorbers could trace star-formation driven winds in low-mass halos (Mhalo < 10^{10.6} Msun). Alternatively, our results imply that z=2 galaxies traced by strong MgII absorbers do not form stars at a rate expected (3--10 M/yr) for their (halo or stellar) masses, supporting the existence of a transition in accretion efficiency at Mhalo ~ 10^{11} Msun. This scenario can explain both the detections and the non-detections.Comment: 14 pages, 4 fig.; MNRAS in press, minor corrections to match proof
    corecore