50 research outputs found

    Повышение доходности лесоохотничьих хозяйств на основе развития новых туристических услуг

    Get PDF
    The comprehensive transcriptomic analysis of clinically annotated human tissue has found widespread use in oncology, cell biology, immunology, and toxicology. In cancer research, microarray-based gene expression profiling has successfully been applied to subclassify disease entities, predict therapy response, and identify cellular mechanisms. Public accessibility of raw data, together with corresponding information on clinicopathological parameters, offers the opportunity to reuse previously analyzed data and to gain statistical power by combining multiple datasets. However, results and conclusions obviously depend on the reliability of the available information. Here, we propose gene expression-based methods for identifying sample misannotations in public transcriptomic datasets. Sample mix-up can be detected by a classifier that differentiates between samples from male and female patients. Correlation analysis identifies multiple measurements of material from the same sample. The analysis of 45 datasets (including 4913 patients) revealed that erroneous sample annotation, affecting 40 % of the analyzed datasets, may be a more widespread phenomenon than previously thought. Removal of erroneously labelled samples may influence the results of the statistical evaluation in some datasets. Our methods may help to identify individual datasets that contain numerous discrepancies and could be routinely included into the statistical analysis of clinical gene expression data

    Diagnostic gastrointestinal markers in primary lung cancer and pulmonary metastases

    Get PDF
    Funding Information: Open access funding provided by Lund University. The study was supported by Swedish governmental funding of clinical research (ALF), the Franke and Margareta Bergqvist Foundation, and the Swedish Cancer Society. The funding sources had no role in the design or conduct of the study. Publisher Copyright: © 2023, The Author(s).Histopathological diagnosis of pulmonary tumors is essential for treatment decisions. The distinction between primary lung adenocarcinoma and pulmonary metastasis from the gastrointestinal (GI) tract may be difficult. Therefore, we compared the diagnostic value of several immunohistochemical markers in pulmonary tumors. Tissue microarrays from 629 resected primary lung cancers and 422 resected pulmonary epithelial metastases from various sites (whereof 275 colorectal cancer) were investigated for the immunohistochemical expression of CDH17, GPA33, MUC2, MUC6, SATB2, and SMAD4, for comparison with CDX2, CK20, CK7, and TTF-1. The most sensitive markers for GI origin were GPA33 (positive in 98%, 60%, and 100% of pulmonary metastases from colorectal cancer, pancreatic cancer, and other GI adenocarcinomas, respectively), CDX2 (99/40/100%), and CDH17 (99/0/100%). In comparison, SATB2 and CK20 showed higher specificity, with expression in 5% and 10% of mucinous primary lung adenocarcinomas and both in 0% of TTF-1-negative non-mucinous primary lung adenocarcinomas (25-50% and 5-16%, respectively, for GPA33/CDX2/CDH17). MUC2 was negative in all primary lung cancers, but positive only in less than half of pulmonary metastases from mucinous adenocarcinomas from other organs. Combining six GI markers did not perfectly separate primary lung cancers from pulmonary metastases including subgroups such as mucinous adenocarcinomas or CK7-positive GI tract metastases. This comprehensive comparison suggests that CDH17, GPA33, and SATB2 may be used as equivalent alternatives to CDX2 and CK20. However, no single or combination of markers can categorically distinguish primary lung cancers from metastatic GI tract cancer.Peer reviewe

    Формирование эмоциональной культуры как компонента инновационной культуры студентов

    Get PDF
    Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been

    FinnGen provides genetic insights from a well-phenotyped isolated population

    Get PDF
    Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored1,2. FinnGen aims to study the genome and national health register data of 500,000 Finnish individuals. Given the relatively high median age of participants (63 years) and the substantial fraction of hospital-based recruitment, FinnGen is enriched for disease end points. Here we analyse data from 224,737 participants from FinnGen and study 15 diseases that have previously been investigated in large genome-wide association studies (GWASs). We also include meta-analyses of biobank data from Estonia and the United Kingdom. We identified 30 new associations, primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 diseases also identified 2,733 genome-wide significant associations (893 phenome-wide significant (PWS), P < 2.6 × 10–11) at 2,496 (771 PWS) independent loci with 807 (247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were enriched by more than twofold in Finland. These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through low-frequency, high impact variants.publishedVersionPeer reviewe

    Various Antibody Clones of Napsin A, Thyroid Transcription Factor 1, and p40 and Comparisons With Cytokeratin 5 and p63 in Histopathologic Diagnostics of Non-Small Cell Lung Carcinoma.

    No full text
    Histopathologic classification of cancer in the lung is important for choice of treatment. Cytokeratin 5 (CK5), p63, and p40 are commonly used immunohistochemical markers for squamous cell carcinoma, and napsin A (NAPA) and thyroid transcription factor 1 (TTF-1) are markers for adenocarcinoma of the lung. The aim of the present study was to evaluate these 5 markers and to compare different commercially available antibody clones in lung cancer. Tissue microarrays including 557 cases of surgically treated primary tumors and 73 matched metastases of non-small cell lung carcinoma were stained with CK5, p63, p40 (monoclonal and polyclonal), NAPA (5 different clones/protocols), and TTF-1 (2 different clones). The sensitivity and specificity to separate squamous cell carcinomas from non-small cell carcinomas of nonsquamous type were 95% and 97%, respectively, for CK5, 95% and 87% for p63, 94% and 96% for p40, 75% to 79% and 96% to 98% for the NAPA clones/protocols and 80% to 85% and 95% to 97% for the TTF-1 clones. A combination of NAPA and TTF-1 resulted in a higher sensitivity (85% to 88%), whereas combining CK5 and p40 did not increase the diagnostic performance. The sensitivity was generally lower in evaluation of lung cancer metastases. The κ-values for comparison of staining results between monoclonal and polyclonal p40 and between the 5 NAPA clones/protocols were 0.97 to 1.0, whereas the corresponding figure for the 2 TTF-1 clones was 0.91 to 0.93. Conclusively, CK5 and p40 are good diagnostic markers for squamous cell carcinoma and superior to p63. In addition, it may be useful to combine NAPA and TTF-1 for increased sensitivity in lung cancer diagnostics. There is no substantial difference between monoclonal and polyclonal p40 and between different NAPA clones, whereas there is a difference between the TTF-1 clones 8G7G3/1 and SPT24

    Identification of sample annotation errors in gene expression datasets

    No full text
    The comprehensive transcriptomic analysis of clinically annotated human tissue has found widespread use in oncology, cell biology, immunology, and toxicology. In cancer research, microarray-based gene expression profiling has successfully been applied to subclassify disease entities, predict therapy response, and identify cellular mechanisms. Public accessibility of raw data, together with corresponding information on clinicopathological parameters, offers the opportunity to reuse previously analyzed data and to gain statistical power by combining multiple datasets. However, results and conclusions obviously depend on the reliability of the available information. Here, we propose gene expression-based methods for identifying sample misannotations in public transcriptomic datasets. Sample mix-up can be detected by a classifier that differentiates between samples from male and female patients. Correlation analysis identifies multiple measurements of material from the same sample. The analysis of 45 datasets (including 4913 patients) revealed that erroneous sample annotation, affecting 40 % of the analyzed datasets, may be a more widespread phenomenon than previously thought. Removal of erroneously labelled samples may influence the results of the statistical evaluation in some datasets. Our methods may help to identify individual datasets that contain numerous discrepancies and could be routinely included into the statistical analysis of clinical gene expression data
    corecore