22 research outputs found

    Analysis of the canid Y-chromosome phylogeny using short-read sequencing data reveals the presence of distinct haplogroups among Neolithic European dogs

    Full text link
    Abstract Background Most genetic analyses of ancient and modern dogs have focused on variation in the autosomes or on the mitochondria. Mitochondrial DNA is more easily obtained from ancient samples than nuclear DNA and mitochondrial analyses have revealed important insights into the evolutionary history of canids. Utilizing a recently published dog Y-chromosome reference, we analyzed Y-chromosome sequence across a diverse collection of canids and determined the Y haplogroup of three ancient European dogs. Results We identified 1121 biallelic Y-chromosome SNVs using whole-genome sequences from 118 canids and defined variants diagnostic to distinct dog Y haplogroups. Similar to that of the mitochondria and previous more limited studies of Y diversity, we observe several deep splits in the Y-chromosome tree which may be the result of retained Y-chromosome diversity which predates dog domestication or post-domestication admixture with wolves. We find that Y-chromosomes from three ancient European dogs (4700–7000 years old) belong to distinct clades. Conclusions We estimate that the time to the most recent comment ancestor of dog Y haplogroups is 68–151 thousand years ago. Analysis of three Y-chromosomes from the Neolithic confirms long stranding population structure among European dogs.https://deepblue.lib.umich.edu/bitstream/2027.42/143535/1/12864_2018_Article_4749.pd

    Association of the FTO Obesity Risk Variant rs8050136 With Percentage of Energy Intake From Fat in Multiple Racial/Ethnic Populations

    Get PDF
    Common obesity risk variants have been associated with macronutrient intake; however, these associations' generalizability across populations has not been demonstrated. We investigated the associations between 6 obesity risk variants in (or near) the NEGR1, TMEM18, BDNF, FTO, MC4R, and KCTD15 genes and macronutrient intake (carbohydrate, protein, ethanol, and fat) in 3 Population Architecture using Genomics and Epidemiology (PAGE) studies: the Multiethnic Cohort Study (1993–2006) (n = 19,529), the Atherosclerosis Risk in Communities Study (1987–1989) (n = 11,114), and the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) Study, which accesses data from the Third National Health and Nutrition Examination Survey (1991–1994) (n = 6,347). We used linear regression, with adjustment for age, sex, and ethnicity, to estimate the associations between obesity risk genotypes and macronutrient intake. A fixed-effects meta-analysis model showed that the FTO rs8050136 A allele (n = 36,973) was positively associated with percentage of calories derived from fat (βmeta = 0.2244 (standard error, 0.0548); P = 4 × 10−5) and inversely associated with percentage of calories derived from carbohydrate (βmeta = −0.2796 (standard error, 0.0709); P = 8 × 10−5). In the Multiethnic Cohort Study, percentage of calories from fat assessed at baseline was a partial mediator of the rs8050136 effect on body mass index (weight (kg)/height (m)2) obtained at 10 years of follow-up (mediation of effect = 0.0823 kg/m2, 95% confidence interval: 0.0559, 0.1128). Our data provide additional evidence that the association of FTO with obesity is partially mediated by dietary intake

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Data from: Y-chromosome structural diversity in the bonobo and chimpanzee lineages

    No full text
    The male specific regions of primate Y-chromosomes (MSY) are enriched for multi-copy genes highly expressed in the testis. These genes are located in large repetitive sequences arranged as palindromes, inverted-, and tandem- repeats termed amplicons. In humans, these genes have critical roles in male fertility and are essential for the production of sperm. The structure of human and chimpanzee amplicon sequences show remarkable difference relative to the remainder of the genome, a difference that may be the result of intense selective pressure on male fertility. Four subspecies of common chimpanzees have undergone extended periods of isolation and appear to be in the early process of subspeciation.. A recent study found amplicons enriched for testis-expressed genes on the primate X-chromosome the target of hard selective sweeps, and male-fertility genes on the Y-chromosome may also be the targets of selection. However, little is understood about Y-chromosome amplicon diversity within and across chimpanzee populations. Here, we analyze 9 common chimpanzee (representing three subspecies: Pan troglodytes schweinfurthii, Pan troglodytes ellioti, and Pan troglodytes verus) and two bonobo (Pan paniscus) male whole-genome sequences to assess Y ampliconic copy-number diversity across the Pan genus. We observe that the copy-number of Y chromosome amplicons is variable amongst chimpanzees and bonobos, and identify several lineage-specific patterns, including variable copy-number of azoospermia candidates RBMY and DAZ. We detect recurrent switchpoints of copy-number change along the ampliconic tracts across chimpanzee populations, which may be the result of localized genome instability or selective forces

    Population stratification in the context of diverse epidemiologic surveys sans genome-wide data

    Get PDF
    Population stratification or confounding by genetic ancestry is a potential cause of false associations in genetic association studies. Estimation of and adjustment for genetic ancestry has become common practice thanks in part to the availability of ancestry informative markers on genome-wide association study (GWAS) arrays. While array data is now widespread, these data are not ubiquitous as several large epidemiologic and clinic-based studies lack genome-wide data. One such large epidemiologic-based study lacking genome-wide data accessible to investigators is the National Health and Nutrition Examination Surveys (NHANES), population-based cross-sectional surveys of Americans linked to demographic, health, and lifestyle data conducted by the Centers for Disease Control and Prevention. DNA samples (n=14,998) were extracted from biospecimens from consented NHANES participants between 1991-1994 (NHANES III, phase 2) and 1999-2002 and represent three major self-identified racial/ethnic groups: non-Hispanic whites (n=6,634), non-Hispanic blacks (n=3,458), and Mexican Americans (n=3,950). We as the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) study genotyped candidate gene and GWAS-identified index variants in NHANES as part of the larger Population Architecture using Genomics and Epidemiology (PAGE) I study for collaborative genetic association studies. To enable basic quality control such as estimation of genetic ancestry to control for population stratification in NHANES san genome-wide data, we outline here strategies that use limited genetic data to identify the markers optimal for characterizing genetic ancestry. From among 411 and 295 autosomal SNPs available in NHANES III and NHANES 1999-2002, we demonstrate that markers with ancestry information can be identified to estimate global ancestry. Despite limited resolution, global genetic ancestry is highly correlated with self-identified race for the majority of participants, although less so for ethnicity. Overall, the strategies outlined here for a large epidemiologic study can be applied to other datasets accessible for genotype phenotype studies but are sans genome-wide data

    Subtyping Severe Hypercholesterolemia by Genetic Determinant to Stratify Risk of Coronary Artery Disease

    No full text
    BACKGROUND: Severe hypercholesterolemia, defined as LDL (low-density lipoprotein) cholesterol (LDL-C) measurement ≥190 mg/dL, is associated with increased risk for coronary artery disease (CAD). Causes of severe hypercholesterolemia include monogenic familial hypercholesterolemia, polygenic hypercholesterolemia, elevated lipoprotein(a) [Lp(a)] hypercholesteremia, polygenic hypercholesterolemia with elevated Lp(a) (two-hit), or nongenetic hypercholesterolemia. The added value of using a genetics approach to stratifying risk of incident CAD among those with severe hypercholesterolemia versus using LDL-C levels alone for risk stratification is not known. METHODS: To determine whether risk stratification by genetic cause provided better 10-year incident CAD risk stratification than LDL-C level, a retrospective cohort study comparing incident CAD risk among severe hypercholesterolemia subtypes (genetic and nongenetic causes) was performed among 130 091 UK Biobank participants. Analyses were limited to unrelated, White British or Irish participants with available exome sequencing data. Participants with cardiovascular disease at baseline were excluded from analyses of incident CAD. RESULTS: Of 130 091 individuals, 68 416 (52.6%) were women, and the mean (SD) age was 56.7 (8.0) years. Of the cohort, 9.0% met severe hypercholesterolemia criteria. Participants with LDL-C between 210 and 229 mg/dL and LDL-C ≥230 mg/dL showed modest increases in incident CAD risk relative to those with LDL-C between 190 and 209 mg/dL (210-229 mg/dL: hazard ratio [HR], 1.3 [95% CI, 1.1-1.7]; ≥230 mg/dL: HR, 1.3 [95% CI, 1.0-1.7]). In contrast, when risk was stratified by genetic subtype, monogenic familial hypercholesterolemia, elevated Lp(a), and two-hit hypercholesterolemia subtypes had increased rates of incident CAD relative to the nongenetic hypercholesterolemia subtype (monogenic familial hypercholesterolemia: HR, 2.3 [95% CI, 1.4-4.0]; elevated Lp(a): HR, 1.5 [95% CI, 1.2-2.0]; two-hit: HR, 1.9 [95% CI, 1.4-2.6]), while polygenic hypercholesterolemia did not. CONCLUSIONS: Genetics-based subtyping for monogenic familial hypercholesterolemia and Lp(a) in those with severe hypercholesterolemia provided better stratification of 10-year incident CAD risk than LDL-C-based stratification.</p

    humanY.annotated.ddPCR.kmer

    No full text
    Files accompanying "Y-chromosome structural diversity in the bonobo and chimpanzee lineages" by Oetjens et al. 2016 chimpY and humanY .kmer files are bed files of k-mers referenced in the manuscript used for calculating depth of Y-amplicons. Positions refer to panTro4 and hg19 coordinates for chimp and human k-mers respectively. column 1: chromosome column 2: k-mer start column 3: k-mer end column 4: k-mer sequence column 5: annotatio
    corecore