53 research outputs found

    The role of the maximum involvement of biopsy core in predicting outcome for patients treated with dose-escalated radiation therapy for prostate cancer

    Full text link
    Abstract Purpose To evaluate the influence of the maximum involvement of biopsy core (MIBC) on outcome for prostate cancer patients treated with dose-escalated external beam radiotherapy (EBRT). Methods and materials The outcomes of 590 men with localized prostate cancer treated with EBRT (≄75 Gy) at a single institution were retrospectively analyzed. The influence of MIBC on freedom from biochemical failure (FFBF), freedom from metastasis (FFM), cause-specific survival (CSS), and overall survival (OS) was compared to other surrogates for biopsy tumor volume, including the percentage of positive biopsy cores (PPC) and the total percentage of cancer volume (PCV). Results MIBC correlated with PSA, T-stage, Gleason score, NCCN risk group, PPC, PCV, and treatment related factors. On univariate analysis, MIBC was prognostic for all endpoints except OS; with greatest impact in those with Gleason scores of 8–10. However, on multivariate analysis, MIBC was only prognostic for FFBF (hazard ratio [HR] 1.9, p = 0.008), but not for FFM (p = 0.19), CSS (p = 0.16), and OS (p = 0.99). Conclusions In patients undergoing dose-escalated EBRT, MIBC had the greatest influence in those with Gleason scores of 8–10 but provided no additional prognostic data as compared to PPC and PCV, which remain the preferable prognostic variables in this patient population.http://deepblue.lib.umich.edu/bitstream/2027.42/112858/1/13014_2012_Article_631.pd

    A model combining age, equivalent uniform dose and IL-8 may predict radiation esophagitis in patients with non-small cell lung cancer

    Get PDF
    Background and purpose To study whether cytokine markers may improve predictive accuracy of radiation esophagitis (RE) in non-small cell lung cancer (NSCLC) patients. Materials and methods A total of 129 patients with stage I-III NSCLC treated with radiotherapy (RT) from prospective studies were included. Thirty inflammatory cytokines were measured in platelet-poor plasma samples. Logistic regression was performed to evaluate the risk factors of RE. Stepwise Akaike information criterion (AIC) and likelihood ratio test were used to assess model predictions. Results Forty-nine of 129 patients (38.0%) developed grade ≄2 RE. Univariate analysis showed that age, stage, concurrent chemotherapy, and eight dosimetric parameters were significantly associated with grade ≄2 RE (p < 0.05). IL-4, IL-5, IL-8, IL-13, IL-15, IL-1α, TGFα and eotaxin were also associated with grade ≄2 RE (p <0.1). Age, esophagus generalized equivalent uniform dose (EUD), and baseline IL-8 were independently associated grade ≄2 RE. The combination of these three factors had significantly higher predictive power than any single factor alone. Addition of IL-8 to toxicity model significantly improves RE predictive accuracy (p = 0.019). Conclusions Combining baseline level of IL-8, age and esophagus EUD may predict RE more accurately. Refinement of this model with larger sample sizes and validation from multicenter database are warranted

    Stereotactic Body Radiation Therapy for Primary and Metastatic Liver Tumors

    Get PDF
    AbstractOBJECTIVES: The full potential of stereotactic body radiation therapy (SBRT), in the treatment of unresectable intrahepatic malignancies, has yet to be realized as our experience is still limited. Thus, we evaluated SBRT outcomes for primary and metastatic liver tumors, with the goal of identifying factors that may aid in optimization of therapy. METHODS: From2005 to 2010, 62 patients with 106 primary and metastatic liver tumors were treated with SBRT to a median biologic effective dose (BED) of 100 Gy (42.6-180). The majority of patients received either three (47%) or five fractions (48%). Median gross tumor volume (GTV) was 8.8 cm3 (0.2-222.4). RESULTS: With a median followup of 18 months (0.46-46.8), freedom from local progression (FFLP) was observed in 97 of 106 treated tumors, with 1- and 2-year FFLP rates of 93% and 82%. Median overall survival (OS) for all patients was 25.2 months, with 1- and 2-year OS of 81%and 52%. Neither BED nor GTV significantly predicted for FFLP. Local failure was associated with a higher risk of death [hazard ratio (HR) = 5.1, P = .0007]. One Child-Pugh Class B patient developed radiationinduced liver disease. There were no other significant toxicities. CONCLUSIONS: SBRT provides excellent local control for both primary and metastatic liver lesions with minimal toxicity. Future studies should focus on appropriate selection of patients and on careful assessment of liver function to maximize both the safety and efficacy of treatment

    MicroRNA-143 activation regulates smooth muscle and endothelial cell crosstalk in pulmonary arterial hypertension

    Get PDF
    Rationale: The pathogenesis of PAH remains unclear. The four microRNAs representing the miR-143 and miR-145 stem loops are genomically clustered. Objective: To elucidate the transcriptional regulation of the miR-143/145 cluster, and the role of miR-143 in PAH. Methods and Results: We identified the promoter region that regulates miR-143/145 miRNA expression in pulmonary artery smooth muscle cells (PASMCs). We mapped PAH-related signalling pathways, including estrogens receptor (ER), liver X factor/retinoic X receptor (LXR/RXR), TGF-ÎČ (Smads), and hypoxia (HRE) that regulated levels of all pri-miR stem loop transcription and resulting miRNA expression. We observed that miR-143-3p is selectively upregulated compared to miR-143-5p during PASMC migration. Modulation of miR-143 in PASMCs significantly altered cell migration and apoptosis. In addition, we found high abundance of miR-143-3p in PASMCs-derived exosomes. Using assays with pulmonary arterial endothelial cells (PAECs) we demonstrated a paracrine pro-migratory and pro-angiogenic effect of miR-143-3p enriched exosomes from PASMC. Quantitative PCR and in situ hybridisation showed elevated expression of miR-143 in calf models of PAH as well as in samples from PAH patients. Moreover, in contrast to our previous findings that had not supported a therapeutic role in vivo, we now demonstrate a protective role for miR-143 in experimental PH in vivo in miR-143-/- and antimiR143-3p-treated mice exposed to chronic hypoxia in both preventative and reversal settings. Conclusions: MiR-143-3p modulated both cellular and exosome-mediated responses in pulmonary vascular cells, while inhibition of miR-143-3p blocked experimental PH. Taken together these findings confirm an important role for the miR-143/145 cluster in PAH pathobiology

    Human papillomavirus–related oropharyngeal cancer: HPV and p16 status in the recurrent versus parent tumor

    Full text link
    Background Although typically associated with a favorable prognosis, a minority of human papillomavirus (HPV)‐related (+) oropharyngeal cancers recur after chemoradiation. We postulated that a minor HPV‐negative tumor subfraction may be responsible for recurrences of HPV+ oropharyngeal cancer. Methods Paired untreated primary and recurrent tumor specimens were identified for 37 patients with oropharyngeal cancer who received definitive chemoradiotherapy at our institution. Concordance in HPV/p16 expression between primary and recurrent tumors was assessed. Results Among 31 patients with HPV+/p16+ primary tumors, 30 (97%) retained evidence of both HPV and p16 expression at recurrence (27 HPV+/p16+; 3 HPV+/p16‐partial). One (3%) initially HPV+/p16+ patient developed an HPV‐negative/p16‐negative lung squamous cell carcinoma (SCC), representing either a discordant oropharyngeal cancer metastasis or second primary tumor. Conclusion HPV‐related oropharyngeal cancers retain HPV+/p16+ expression at recurrence. Our results fail to provide evidence that a minor HPV‐negative tumor subfraction is responsible for biologically aggressive behavior of HPV+ oropharyngeal cancer that recurs after chemoradiation. © 2014 Wiley Periodicals, Inc. Head Neck 37 : 8–11, 2015Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109811/1/hed23548.pd

    The Interaction Properties of the Human Rab GTPase Family – A Comparative Analysis Reveals Determinants of Molecular Binding Selectivity

    Get PDF
    Rab GTPases constitute the largest subfamily of the Ras protein superfamily. Rab proteins regulate organelle biogenesis and transport, and display distinct binding preferences for effector and activator proteins, many of which have not been elucidated yet. The underlying molecular recognition motifs, binding partner preferences and selectivities are not well understood.Comparative analysis of the amino acid sequences and the three-dimensional electrostatic and hydrophobic molecular interaction fields of 62 human Rab proteins revealed a wide range of binding properties with large differences between some Rab proteins. This analysis assists the functional annotation of Rab proteins 12, 14, 26, 37 and 41 and provided an explanation for the shared function of Rab3 and 27. Rab7a and 7b have very different electrostatic potentials, indicating that they may bind to different effector proteins and thus, exert different functions. The subfamily V Rab GTPases which are associated with endosome differ subtly in the interaction properties of their switch regions, and this may explain exchange factor specificity and exchange kinetics.We have analysed conservation of sequence and of molecular interaction fields to cluster and annotate the human Rab proteins. The analysis of three dimensional molecular interaction fields provides detailed insight that is not available from a sequence-based approach alone. Based on our results, we predict novel functions for some Rab proteins and provide insights into their divergent functions and the determinants of their binding partner selectivity

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3â€Č-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling

    Get PDF
    Following endocytosis into the endosomal network, integral membrane proteins undergo sorting for lysosomal degradation or are retrieved and recycled back to the cell surface. Here we describe the discovery of an ancient and conserved multiprotein complex that orchestrates cargo retrieval and recycling and, importantly, is biochemically and functionally distinct from the established retromer pathway. We have called this complex 'retriever'; it is a heterotrimer composed of DSCR3, C16orf62 and VPS29, and bears striking similarity to retromer. We establish that retriever associates with the cargo adaptor sorting nexin 17 (SNX17) and couples to CCC (CCDC93, CCDC22, COMMD) and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of α5ÎČ1 integrin. Through quantitative proteomic analysis, we identify over 120 cell surface proteins, including numerous integrins, signalling receptors and solute transporters, that require SNX17-retriever to maintain their surface levels. Our\ua0identification of retriever establishes a major endosomal retrieval and recycling pathway

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P = 9.2 x 10(-20)), ER-negative BC (P = 1.1 x 10(-13)), BRCA1-associated BC (P = 7.7 x 10(-16)) and triple negative BC (P-diff = 2 x 10(-5)). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P = 2 x 10(-3)) and ABHD8 (PPeer reviewe
    • 

    corecore