81 research outputs found
Knick v. Township of Scott: A Source of New Uncertainty for State and Local Governments in Regulatory Takings Challenges to Land Use Regulation
Ultra Vires Takings
When does legislative or administrative regulatory action go[] too far and effectively amount to an .appropriation of private property for which the Fifth Amendment requires just compensation? This question has turned out to be one of the thorniest in American constitutional law. The Supreme Court has identified several circumstances in which one can expect to find a regulatory taking, but its numerous pronouncements on the subject give no clear rule to distinguish compensable takings from noncompensable interference with property rights. Notwithstanding its volume, the commentary on the Takings Clause by and large addresses only proper governmental action that rises to the level of a taking. Commentators have bypassed the question of what the Clause demands of regulatory restrictions that suffer from other legal flaws, such as being without statutory authority or being arbitrary and capricious. This Note suggests there are compelling reasons that one such flaw - the action\u27s being unauthorized, or ultra vires4 - should be fatal to takings claims directed against state governments. Whether these particular takings must be compensated remains to be determined conclusively. This issue may be presented in several procedural postures. A property owner might bring both a takings claim and an administrative law claim complaining that the regulation is ultra vires. The court might then enjoin the regulatory action on the latter basis, converting what would have been a permanent taking into a temporary taking. The issue also arises when a court has enjoined the regulation in a previous action and a property owner later seeks just compensation for the duration of the enjoined action. In any event, because courts enjoin unauthorized actions, such flawed regulations can, at most, amount to temporary takings
Metal-insulator transition from combined disorder and interaction effects in Hubbard-like electronic lattice models with random hopping
We uncover a disorder-driven instability in the diffusive Fermi liquid phase
of a class of many-fermion systems, indicative of a metal-insulator transition
of first order type, which arises solely from the competition between quenched
disorder and interparticle interactions. Our result is expected to be relevant
for sufficiently strong disorder in d = 3 spatial dimensions. Specifically, we
study a class of half-filled, Hubbard-like models for spinless fermions with
(complex) random hopping and short-ranged interactions on bipartite lattices,
in d > 1. In a given realization, the hopping disorder breaks time reversal
invariance, but preserves the special ``nesting'' symmetry responsible for the
charge density wave instability of the ballistic Fermi liquid. This disorder
may arise, e.g., from the application of a random magnetic field to the
otherwise clean model. We derive a low energy effective field theory
description for this class of disordered, interacting fermion systems, which
takes the form of a Finkel'stein non-linear sigma model [A. M. Finkel'stein,
Zh. Eksp. Teor. Fiz. 84, 168 (1983), Sov. Phys. JETP 57, 97 (1983)]. We analyze
the Finkel'stein sigma model using a perturbative, one-loop renormalization
group analysis controlled via an epsilon-expansion in d = 2 + epsilon
dimensions. We find that, in d = 2 dimensions, the interactions destabilize the
conducting phase known to exist in the disordered, non-interacting system. The
metal-insulator transition that we identify in d > 2 dimensions occurs for
disorder strengths of order epsilon, and is therefore perturbatively accessible
for epsilon << 1. We emphasize that the disordered system has no localized
phase in the absence of interactions, so that a localized phase, and the
transition into it, can only appear due to the presence of the interactions.Comment: 47 pages, 25 figures; submitted to Phys. Rev. B. Long version of
arXiv:cond-mat/060757
The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey
The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic
data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data
release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median
z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar
spectra, along with the data presented in previous data releases. These spectra
were obtained with the new BOSS spectrograph and were taken between 2009
December and 2011 July. In addition, the stellar parameters pipeline, which
determines radial velocities, surface temperatures, surface gravities, and
metallicities of stars, has been updated and refined with improvements in
temperature estimates for stars with T_eff<5000 K and in metallicity estimates
for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars
presented in DR8, including stars from SDSS-I and II, as well as those observed
as part of the SDSS-III Sloan Extension for Galactic Understanding and
Exploration-2 (SEGUE-2).
The astrometry error introduced in the DR8 imaging catalogs has been
corrected in the DR9 data products. The next data release for SDSS-III will be
in Summer 2013, which will present the first data from the Apache Point
Observatory Galactic Evolution Experiment (APOGEE) along with another year of
data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at
http://www.sdss3.org/dr
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
Experiencing mindfulness meditation—a client narrative perspective
The study was based on the non-participant involvement of the researcher in four six-to-eight weeks' mindfulness meditation training courses led by chartered psychologists. The participants suffered from stress/sleeplessness, depression or agoraphobia in the presented cases. They were selected on the basis of recommendations by the psychologist who was the course instructor, who described them as positive and suitable. The participants wrote diaries on a weekly basis, and they were interviewed at the beginning, middle and end of the course. An in-depth analysis of three individual cases will be presented in the form of narratives constructed from their own words. The narratives demonstrate the unique and embodied changes of the individual participant's experiences during the training course. The purpose was to illustrate richly what happens and how changes happen during these weeks of learning and practicing mindfulness meditation. It is not the intention to give evidence about the effectiveness of mindfulness meditation in general, but to present the whats and hows of cases where mindfulness meditation appears to improve quality of life, health and well-being
In Vivo Fluorescence Immunohistochemistry:Localization of Fluorescently Labeled Cetuximab in Squamous Cell Carcinomas
Anti-EGFR (epidermal growth factor receptor) antibody based treatment strategies have been successfully implemented in head and neck squamous cell carcinoma (HNSCC). Unfortunately, predicting an accurate and reliable therapeutic response remains a challenge on a per-patient basis. Although significant efforts have been invested in understanding EGFR-mediated changes in cell signaling related to treatment efficacy, the delivery and histological localization in (peri-) tumoral compartments of antibody-based therapeutics in human tumors is poorly understood nor ever made visible. In this first in-human study of a systemically administered near-infrared (NIR) fluorescently labeled therapeutic antibody, cetuximab-IRDye800CW (2.5 mg/m(2), 25 mg/m(2), and 62.5 mg/m(2)), we show that by optical molecular imaging (i.e. denominated as In vivo Fluorescence Immunohistochemistry) we were able to evaluate localization of fluorescently labeled cetuximab. Clearly, optical molecular imaging with fluorescently labeled antibodies correlating morphological (peri-) tumoral characteristics to levels of antibody delivery, may improve treatment paradigms based on understanding true tumoral antibody delivery
The Second APOKASC Catalog: The Empirical Approach
We present a catalog of stellar properties for a large sample of 6676 evolved
stars with APOGEE spectroscopic parameters and \textit{Kepler} asteroseismic
data analyzed using five independent techniques. Our data includes evolutionary
state, surface gravity, mean density, mass, radius, age, and the spectroscopic
and asteroseismic measurements used to derive them. We employ a new empirical
approach for combining asteroseismic measurements from different methods,
calibrating the inferred stellar parameters, and estimating uncertainties. With
high statistical significance, we find that asteroseismic parameters inferred
from the different pipelines have systematic offsets that are not removed by
accounting for differences in their solar reference values. We include
theoretically motivated corrections to the large frequency spacing () scaling relation, and we calibrate the zero point of the frequency of
maximum power () relation to be consistent with masses and radii
for members of star clusters. For most targets, the parameters returned by
different pipelines are in much better agreement than would be expected from
the pipeline-predicted random errors, but 22\% of them had at least one method
not return a result and a much larger measurement dispersion. This supports the
usage of multiple analysis techniques for asteroseismic stellar population
studies. The measured dispersion in mass estimates for fundamental calibrators
is consistent with our error model, which yields median random and systematic
mass uncertainties for RGB stars of order 4\%. Median random and systematic
mass uncertainties are at the 9\% and 8\% level respectively for RC stars.Comment: 29 pages, 26 figures. Submitted ApJSupp. Comments welcome. For access
to the main data table (Table 5) use
https://www.dropbox.com/s/k33td8ukefwy5tv/APOKASC2_Table5.txt?dl=0; for
access to the individual pipeline values (Table 6) use
https://www.dropbox.com/s/vl9s2p3obftrv8m/APOKASC2_Table6.txt?dl=
The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library
Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July–2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA—we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020–2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data
- …
