244 research outputs found

    Next Generation Lightweight Mirror Modeling Software

    Get PDF
    The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models easier

    Next-Generation Lightweight Mirror Modeling Software

    Get PDF
    The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models possibl

    Using Resonances to Control Chaotic Mixing within a Translating and Rotating Droplet

    Full text link
    Enhancing and controlling chaotic advection or chaotic mixing within liquid droplets is crucial for a variety of applications including digital microfluidic devices which use microscopic ``discrete'' fluid volumes (droplets) as microreactors. In this work, we consider the Stokes flow of a translating spherical liquid droplet which we perturb by imposing a time-periodic rigid-body rotation. Using the tools of dynamical systems, we have shown in previous work that the rotation not only leads to one or more three-dimensional chaotic mixing regions, in which mixing occurs through the stretching and folding of material lines, but also offers the possibility of controlling both the size and the location of chaotic mixing within the drop. Such a control was achieved through appropriate tuning of the amplitude and frequency of the rotation in order to use resonances between the natural frequencies of the system and those of the external forcing. In this paper, we study the influence of the orientation of the rotation axis on the chaotic mixing zones as a third parameter, as well as propose an experimental set up to implement the techniques discussed.Comment: 15 pages, 6 figure

    Constraining remote oxidation capacity with ATom observations

    Get PDF
    The global oxidation capacity, defined as the tropospheric mean concentration of the hydroxyl radical (OH), controls the lifetime of reactive trace gases in the atmosphere such as methane and carbon monoxide (CO). Models tend to underestimate the methane lifetime and CO concentrations throughout the troposphere, which is consistent with excessive OH. Approximately half of the oxidation of methane and non-methane volatile organic compounds (VOCs) is thought to occur over the oceans where oxidant chemistry has received little validation due to a lack of observational constraints. We use observations from the first two deployments of the NASA ATom aircraft campaign during July-August 2016 and January-February 2017 to evaluate the oxidation capacity over the remote oceans and its representation by the GEOS-Chem chemical transport model. The model successfully simulates the magnitude and vertical profile of remote OH within the measurement uncertainties. Comparisons against the drivers of OH production (water vapor, ozone, and NOy concentrations, ozone photolysis frequencies) also show minimal bias, with the exception of wintertime NOy. The severe model overestimate of NOy during this period may indicate insufficient wet scavenging and/or missing loss on sea-salt aerosols. Large uncertainties in these processes require further study to improve simulated NOy partitioning and removal in the troposphere, but preliminary tests suggest that their overall impact could marginally reduce the model bias in tropospheric OH. During the ATom-1 deployment, OH reactivity (OHR) below 3 km is significantly enhanced, and this is not captured by the sum of its measured components (cOHRobs) or by the model (cOHRmod). This enhancement could suggest missing reactive VOCs but cannot be explained by a comprehensive simulation of both biotic and abiotic ocean sources of VOCs. Additional sources of VOC reactivity in this region are difficult to reconcile with the full suite of ATom measurement constraints. The model generally reproduces the magnitude and seasonality of cOHRobs but underestimates the contribution of oxygenated VOCs, mainly acetaldehyde, which is severely underestimated throughout the troposphere despite its calculated lifetime of less than a day. Missing model acetaldehyde in previous studies was attributed to measurement uncertainties that have been largely resolved. Observations of peroxyacetic acid (PAA) provide new support for remote levels of acetaldehyde. The underestimate in both model acetaldehyde and PAA is present throughout the year in both hemispheres and peaks during Northern Hemisphere summer. The addition of ocean sources of VOCs in the model increases cOHRmod by 3 % to 9 % and improves model-measurement agreement for acetaldehyde, particularly in winter, but cannot resolve the model summertime bias. Doing so would require 100 Tg yr-1 of a longlived unknown precursor throughout the year with significant additional emissions in the Northern Hemisphere summer. Improving the model bias for remote acetaldehyde and PAA is unlikely to fully resolve previously reported model global biases in OH and methane lifetime, suggesting that future work should examine the sources and sinks of OH over land

    An Observationally Constrained Evaluation of the Oxidative Capacity in the Tropical Western Pacific Troposphere

    Get PDF
    Hydroxyl radical (OH) is the main daytime oxidant in the troposphere and determines the atmospheric lifetimes of many compounds. We use aircraft measurements of O3, H2O, NO, and other species from the Convective Transport of Active Species in the Tropics (CONTRAST) field campaign, which occurred in the tropical western Pacific (TWP) during January–February 2014, to constrain a photochemical box model and estimate concentrations of OH throughout the troposphere. We find that tropospheric column OH (OHCOL) inferred from CONTRAST observations is 12 to 40% higher than found in chemical transport models (CTMs), including CAM-chem-SD run with 2014 meteorology as well as eight models that participated in POLMIP (2008 meteorology). Part of this discrepancy is due to a clear-sky sampling bias that affects CONTRAST observations; accounting for this bias and also for a small difference in chemical mechanism results in our empirically based value of OHCOL being 0 to 20% larger than found within global models. While these global models simulate observed O3 reasonably well, they underestimate NOx (NO + NO2) by a factor of two, resulting in OHCOL ~30% lower than box model simulations constrained by observed NO. Underestimations by CTMs of observed CH3CHO throughout the troposphere and of HCHO in the upper troposphere further contribute to differences between our constrained estimates of OH and those calculated by CTMs. Finally, our calculations do not support the prior suggestion of the existence of a tropospheric OH minimum in the TWP, because during January–February 2014 observed levels of O3 and NO were considerably larger than previously reported values in the TWP

    Logistic support provided to Australian disaster medical assistance teams: results of a national survey of team members

    Get PDF
    Background: It is likely that calls for disaster medical assistance teams (DMATs) continue in response to international disasters. As part of a national survey, the present study was designed to evaluate the Australian DMAT experience and the need for logistic support.\ud \ud Methods: Data were collected via an anonymous mailed survey distributed via State and Territory representatives on the Australian Health Protection Committee, who identified team members associated with Australian DMAT deployments from the 2004 Asian Tsunami disaster.\ud \ud Results: The response rate for this survey was 50% (59/118). Most of the personnel had deployed to the South East Asian Tsunami affected areas. The DMAT members had significant clinical and international experience. There was unanimous support for dedicated logistic support with 80% (47/59) strongly agreeing. Only one respondent (2%) disagreed with teams being self sufficient for a minimum of 72 hours. Most felt that transport around the site was not a problem (59%; 35/59), however, 34% (20/59) felt that transport to the site itself was problematic. Only 37% (22/59) felt that pre-deployment information was accurate. Communication with local health providers and other agencies was felt to be adequate by 53% (31/59) and 47% (28/59) respectively, while only 28% (17/59) felt that documentation methods were easy to use and reliable. Less than half (47%; 28/59) felt that equipment could be moved easily between areas by team members and 37% (22/59) that packaging enabled materials to be found easily. The maximum safe container weight was felt to be between 20 and 40 kg by 58% (34/59).\ud \ud Conclusions: This study emphasises the importance of dedicated logistic support for DMAT and the need for teams to be self sufficient for a minimum period of 72 hours. There is a need for accurate pre deployment information to guide resource prioritisation with clearly labelled pre packaging to assist access on site. Container weights should be restricted to between 20 and 40 kg, which would assist transport around the site, while transport to the site was seen as problematic. There was also support for training of all team members in use of basic equipment such as communications equipment, tents and shelters and water purification systems

    Working Memory Impairment in Fibromyalgia Patients Associated with Altered Frontoparietal Memory Network

    Get PDF
    BACKGROUND: Fibromyalgia (FM) is a disorder characterized by chronic widespread pain and frequently associated with other symptoms. Patients with FM commonly report cognitive complaints, including memory problem. The objective of this study was to investigate the differences in neural correlates of working memory between FM patients and healthy subjects, using functional magnetic resonance imaging (MRI). METHODOLOGY/PRINCIPAL FINDINGS: Nineteen FM patients and 22 healthy subjects performed an n-back memory task during MRI scan. Functional MRI data were analyzed using within- and between-group analysis. Both activated and deactivated brain regions during n-back task were evaluated. In addition, to investigate the possible effect of depression and anxiety, group analysis was also performed with depression and anxiety level in terms of Beck depression inventory (BDI) and Beck anxiety inventory (BAI) as a covariate. Between-group analyses, after controlling for depression and anxiety level, revealed that within the working memory network, inferior parietal cortex was strongly associated with the mild (r = 0.309, P = 0.049) and moderate (r = 0.331, P = 0.034) pain ratings. In addition, between-group comparison revealed that within the working memory network, the left DLPFC, right VLPFC, and right inferior parietal cortex were associated with the rating of depression and anxiety? CONCLUSIONS/SIGNIFICANCE: Our results suggest that the working memory deficit found in FM patients may be attributable to differences in neural activation of the frontoparietal memory network and may result from both pain itself and depression and anxiety associated with pain

    Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins

    Get PDF
    Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response

    Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    Get PDF
    Superparamagnetic iron oxide nanoparticles can providemultiple benefits for biomedical applications in aqueous environments such asmagnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.status: publishe
    corecore