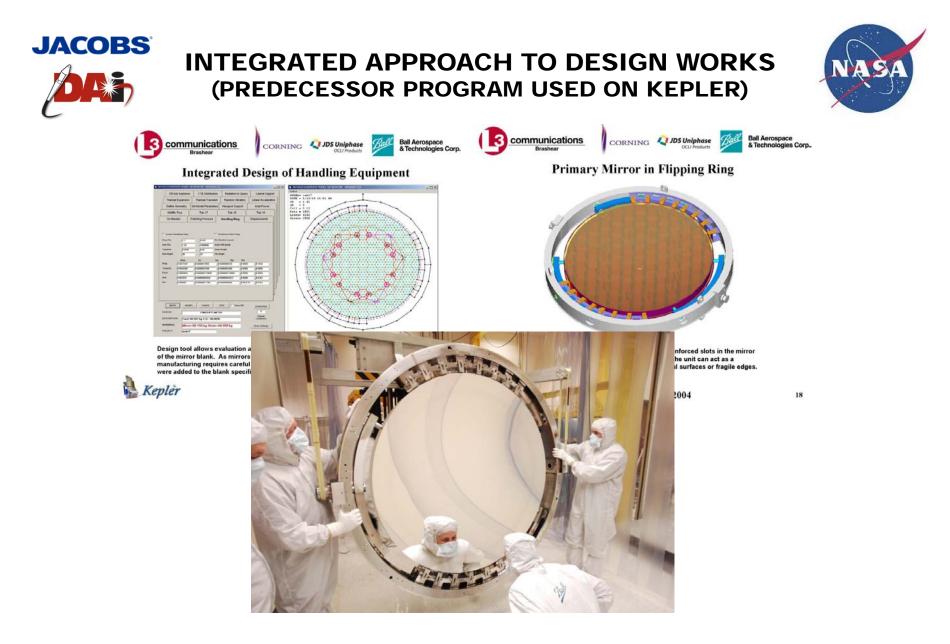
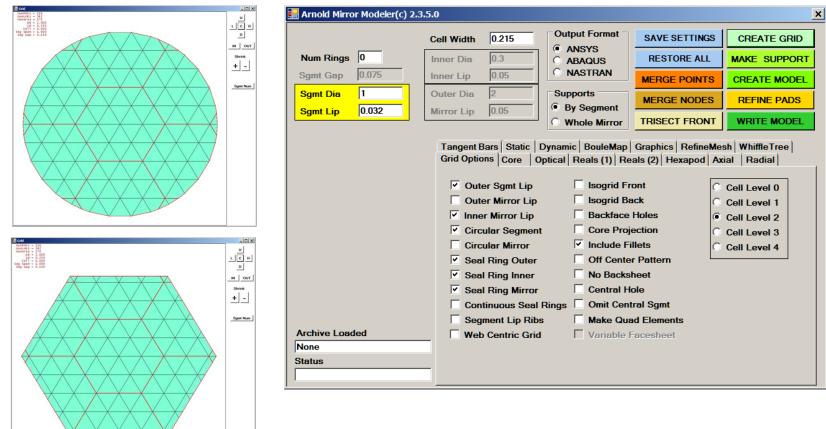


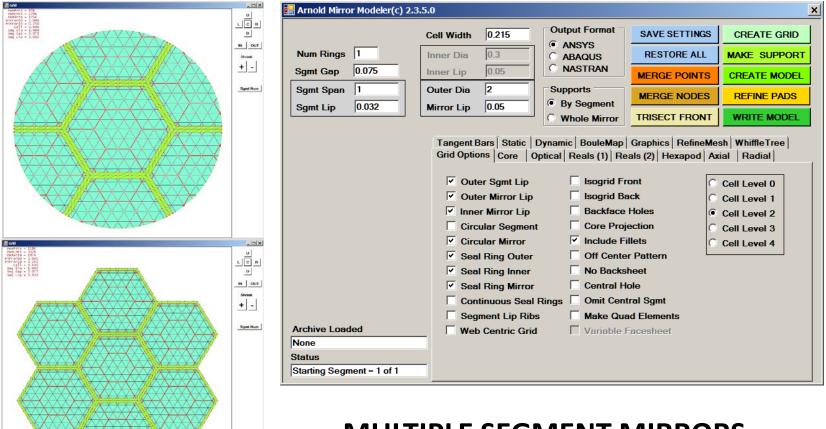
Next-generation lightweight mirror modeling software


William R. Arnold Sr., Sr. Principal Engineer, DAI, Huntsville, AL.
Mathew Fitzgerald, NASA Intern, NASA MSFC, Huntsville, Al.
Rubin Jaca Rosa, NASA Intern, NASA MSFC, Huntsville, Al.
Dr. Phil Stahl, AMTD PI, NASA MSFC, Huntsville, Al.

INTRODUCTION

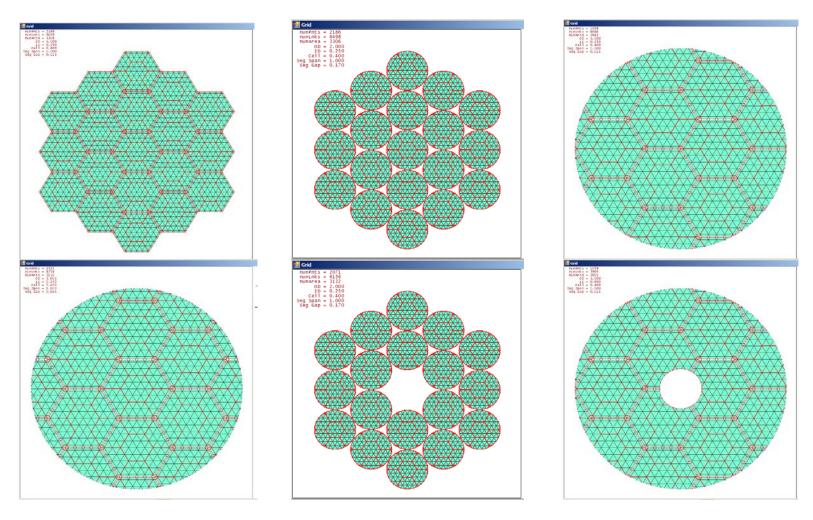

- The modeler was developed to handle all current and projected mirror construction techniques and materials.
- It can be used to model both individual mirrors, arrays of mirrors and "fused segmented" mirrors
- It uses a new generation of algorithms and code written for Windows 7 © and beyond
- Designed for rapid trade studies of both gross geometry as well as detailed parameter (thickness) optimization and integrated suspension design.

WIDE VARIETY OF OPTIONS TO MODEL ALMOST ANY MIRROR STYLE



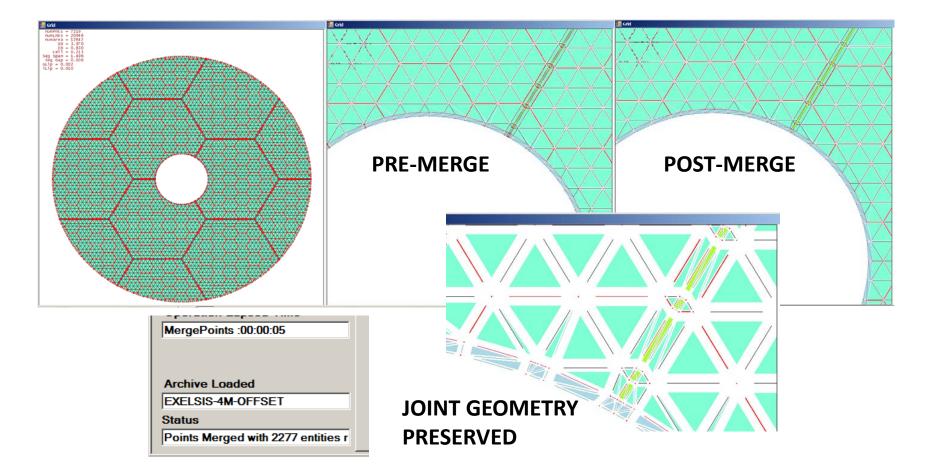
SIMPLE SINGLE BLANK MIRRORS

WIDE VARIETY OF OPTIONS TO MODEL ALMOST ANY MIRROR STYLE



MULTIPLE SEGMENT MIRRORS

MANY CONFIGURATION OPTIONS ARE AVAILABLE



COMPLEX SEGMENTED ASSEMBLIES CAN BE MERGED INTO A SINGLE STRUCTURE

CORE WEB THICKNESSES CAN BE VARIED THRU DEPTH

🛃 Arnold Mirror Mod	leler(c) 2.3.5.0									×
	Cell	Width 0.2	15	Output For	nat	SAVE S	ETTINGS	CREA	te grid	
Num Rings 1	Inne	er Dia 0.3				REST	DRE ALL	MAKE	SUPPORT	r
Sgmt Gap 0.07	5 Inne	er Lip 0.0	5		N	MERGE	POINTS	CREAT	E MODEL	
Sgmt Span 1	Out	ter Dia 2		Supports		MERGE	NODES	REFIN	IE PADS	1
Sgmt Lip 0.03	32 Mirr	ror Lip 0.0	5	By Segme Whole Mi		TRISEC		WRITE	E MODEL	
Model Statistics		angent Bars		namic Boule	eMap					
11233 num	Elems	_	eb-thicknes	ical Reals (ss Core			exapod Ax Web Thick			
3.457069 Area	a (m^2) (kg/m^2)	_	ass-Core ass-Back		Layer	Thick 1	0.0015	Core Show		
122.642 Face	es (kg)	Num Core Front Dept		2 0.0254		Thick 2 Thick 3	0.0015	Show Show		
	es (m)	Core Dept	-	0.152		Thick 4		0		
0 Mille	ed (m^3)	Back Dept		0.0254	-		0.0015			
, Archive Loaded		Total Dept Web Fillet		0.152 0.01	-	Thick 6 Thick 7	0.0015	. r		
None		IsoGrid Fill	et Radius	0.005			0.0015			
Status	adal	Back Mtrl		1	Layer	Thick 9	0.0015	Show	1	
Finished Making M	ouer									

MODEL STATISTICS AVAILABLE ONCE CREATE MODEL FINISHES

MIRROR OPTICAL PRESCRIPTION FLATS, PRIMARY & SECONDARIES

	🔜 Arnold Mirror Modeler(c) 2.3	.5.0			×
		Cell Width 0.215	Output Format	SAVE SETTINGS	CREATE GRID
	Num Rings 1	Inner Dia 0.3	O ABAQUS	RESTORE ALL	MAKE SUPPORT
	Sgmt Gap 0.075	Inner Lip 0.05		MERGE POINTS	CREATE MODEL
	Sgmt Span 1	Outer Dia 2	Supports	MERGE NODES	REFINE PADS
	Sgmt Lip 0.032	Mirror Lip 0.05	By Segment Whole Mirror	TRISECT FRONT	WRITE MODEL
			Dynamic BouleMap Optical Reals (1) Re		
1 million		Radius 2 Conic -1		Flat Mirror	
Model 3D Display				Flat Backed Mirror	
				Convex Mirror	
		Coefficient(1) 0	_		
		Coefficient(2) 0	_		
The the the		Coefficient(3) 0	_		
inda K		Coefficient(4) 0			
AL CALL		Coefficient(5) 0			
1 July 1	Archive Loaded				
	None				
	Status	_			
	Starting Segment = 7 of 7				

INITIAL ELEMENT THICKNESS & MIRROR MATERIAL OPTIONS

	🔜 Arnold Mirror Modeler(c)	3.5.0	×
		Cell Width 0.215 Output Format SAVE SETTINGS CREATE GRID	>
	Num Rings 1	Inner Dia 0.3 © ANSYS RESTORE ALL MAKE SUPPOR	रा
	Sgmt Gap 0.075	Inner Lip 0.05 O NASTRAN MERGE POINTS CREATE MODE	<u>.</u>
	Sgmt Span 1	Outer Dia 2 Supports Mirror Lin 0.05 • By Segment MERGE NODES REFINE PADS	;
	Sgmt Lip 0.032	Mirror Lip 0.05 • By Segment • TRISECT FRONT WRITE MODE	
		Tangent Bars Static Dynamic BouleMap Graphics RefineMesh WhiffleTree Grid Options Core Optical Reals (1) Reals (2) Hexapod Axial Radial	
		r, 1 0.005 Front Facesheet Show Mirror Material	
		r, 2 0.005 Back Facesheet V Show © ULE	
ALL SETTI	NGS	r, 3 0.005 Front IsoGrid Web Show C Zerodur	
CAN BE ARC		r, 4 0.005 Segment Outer Seal Show	
AND RETRI		r, 5 0.005 Inner Seal Ring Show OBK7 r, 6 0.005 Core Web ✓ Show O Silicon Carbide	
		r, 7 0.005 Back IsoGrid Web Show	
		r, 8 0.015 Front Outer Seg Lip 🗌 Show	
		r, 9 0.015 Back Outer Seg Lip Show	
	Archive Loaded	r, 10 0.015 Isogrid Fillet Front Show	
	None Status	r, 11 0.015 Isogrid Fillet Back Show	
	Starting Segment = 7 of 7	r, 12 0.015 Mirror Outer Seal Show	

INPUT DECKS CAN BE GENERATED FOR ANSYS, ABAQUS or NASTRAN

HEXAPOD STYLE SUSPENSION PER SEGMENT OR WHOLE MIRROR

Cod Trading = 200 Trading = 200 T	Arnold Mirror Modeler(c) 2.3.5.0
	Cell Width 0.215 Output Format SAVE SETTINGS CREATE GRID
	Num Rings Inner Dia 0.3 Inner Dia MAKE SUPPORT
	Sgmt Gap 0.075 Inner Lip 0.05 O NASTRAN MERGE POINTS CREATE MODEL
	Sgmt Span 1 Outer Dia 2 Supports Samt Lin 0.032 Mirror Lin 0.05 9 Segment
	Sgmt Lip 0.032 Mirror Lip 0.05 Image: Whole Mirror TRISECT FRONT WRITE MODEL
	Tangent Bars Static Dynamic BouleMap Graphics RefineMesh WhiffleTree Grid Options Core Optical Reals (1) Reals (2) Hexapod Axial Radial Upper Diameter 0.6 (m) Do Hexapod Lower Diameter 0.8 (m) Do Hexapod Pad Height (ground) 0.25 (m) Three Pads Only Start Angle 0 (deg)
	Upper Spread30(deg)Lower Spread5(deg)Acceptable Near1E-05(m)Spring Rate200000(N/m)Fitting Mass1(kg)NonePad Diameter0.21StatusPerimeter Dia0.315Starting Segment = 7 of 7Upper Spread

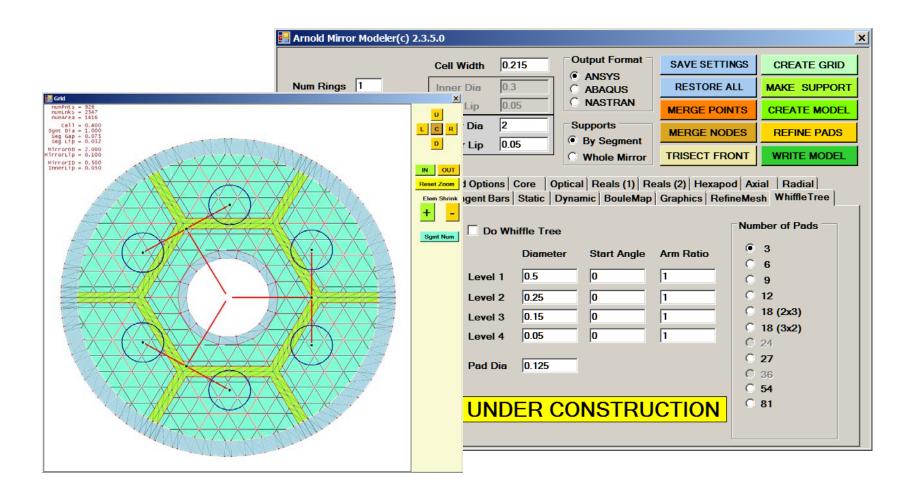
AXIAL STYLE SUSPENSION PER SEGMENT OR WHOLE MIRROR

Conception C	🛃 Arnold Mirror Modeler(c) 2.3	.5.0					×
		Cell Width	0.215	Output Format	SAVE SETTINGS	CREAT	E GRID
	Num Rings 1	Inner Dia	0.3	ANSYS ABAQUS	RESTORE ALL	MAKE S	UPPORT
	Sgmt Gap 0.075	Inner Lip	0.05		MERGE POINTS	CREATE	MODEL
	Sgmt Span 1	Outer Dia	2	Supports	MERGE NODES	REFINE	PADS
	Sgmt Lip 0.032	Mirror Lip	0.05	By Segment Whole Mirror	TRISECT FRONT	WRITE	MODEL
			. F				- 1
				Dynamic BouleMap Optical Reals (1) Re			
			Axial Suppo	· · ·		1	1
		🔽 Do /	Axial Pads				
Col			Diameter	Start Ang Spring R	-•-		
		Pnts	(m)	(deg) (N/m)			
		2	0.6	30 20000	Fitting Mass		(kg)
		0	0		Support Ground		(m)
		0	0		Acceptable Near		(m)
$ \langle \bigcirc \langle \times \times \times \rangle \bigcirc \rangle$		0	0		Pad Diameter	0.25	(m)
	Archive Loaded	0	0	0 0	Axial Perimeter Dia	0.375	(m)
	None	0	0	0 0			
	Status	0	0	0 0			
	Starting Segment = 7 of 7						

RADIAL STYLE SUSPENSION PER SEGMENT OR WHOLE MIRROR

Cond TupPrtS = 134 TupPrtS = 134 TupPrtS = 154 TupPrtS = 154	🔜 Arnold Mirror Modeler(c) 2.3	3.5.0			×
manta: = 114 mata: = 204 00 = 2.000 c = 10.000 c = 10.040 549 Gap = 0.040 549 Gap = 0.040 549 Gap = 0.030		Cell Width 0.215	Output Format	SAVE SETTINGS	CREATE GRID
	Num Rings 1	Inner Dia 0.3	ANSYS ABAQUS	RESTORE ALL	MAKE SUPPORT
	Sgmt Gap 0.075	Inner Lip 0.05	O NASTRAN	MERGE POINTS	CREATE MODEL
	Sgmt Span 1	Outer Dia 2	Supports By Segment	MERGE NODES	REFINE PADS
	Sgmt Lip 0.032	Mirror Lip 0.05	Whole Mirror	TRISECT FRONT	WRITE MODEL
		Tangent Bars Static Grid Options Core Do Radial Su	Optical Reals (1) Re		
mantrix = 112 mantrix = 514 0 = 5 + 500 0 = 0 - 5000 0 = 0 - 5000 5 = 0 - 500 5 = 0 - 500		Num Points Support Length	12 0.15 (m)		
		Spring Rate	20000 (N/m)		
		Start Angle	0 (deg)		
		Fitting Mass	1 (kg)		
	Archive Loaded	Acceptable Near	1E-05 (m)		
	None	_			
	Status	_			
•	Starting Segment = 7 of 7				

TANGENT BAR SUSPENSION PER SEGMENT OR WHOLE MIRROR

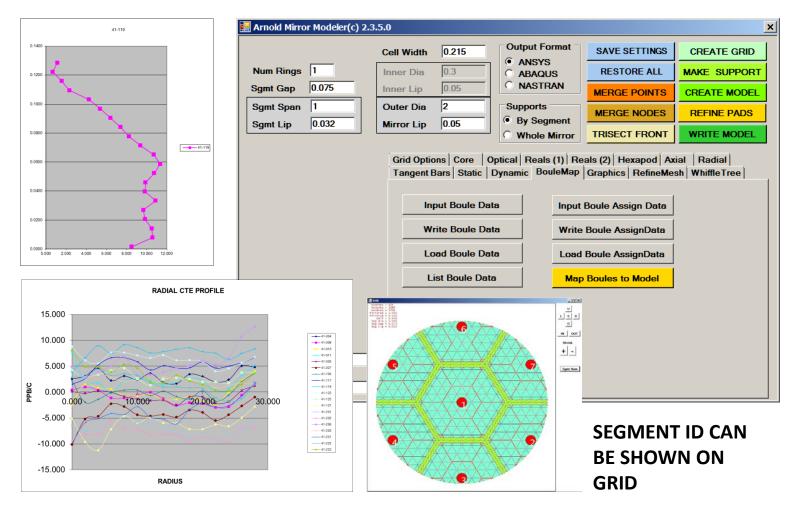


E Grid Rushyrts = 122 Rushyrts = 124 Rushyrts = 124	Harnold Mirror Modeler(c) 2.3	3.5.0				×
00 - 2.000 10 - 0.130 5c + 1 - 0.400 5cg Span - 1.000 5cg sca - 0.130		Cell Width	0.215	Output Format	SAVE SETTINGS	CREATE GRID
	Num Rings 1	Inner Dia	0.3	ANSYS ABAQUS	RESTORE ALL	MAKE SUPPORT
$\land \land $	Sgmt Gap 0.075	Inner Lip	0.05	O NASTRAN	MERGE POINTS	CREATE MODEL
	Sgmt Span 1	Outer Dia	2	Supports By Segment	MERGE NODES	REFINE PADS
	Sgmt Lip 0.032	Mirror Lip	0.05	O Whole Mirror	TRISECT FRONT	WRITE MODEL
		Tangent B		Optical Reals (1) Re Dynamic BouleMap rs		
Critic Critic = 125 numPrts = 125 numPrts = 245 numPrts = 174 op = 2,000		Numbe	er of Tanger	nt Bars 3		
TD = 0.150 cell = 0.460 Seg Span = 1.000 Seg Span = 0.119		Tange	nt Bar Start	Angle 0		
		-	nt Bar Lengt			
			nt Bar Spring nt Fitting Ma	g Rate 20000	kg)	
		Tunge	in in including into		~9 <i>)</i>	
	Archive Loaded	_				
	None Status					
	Starting Segment = 7 of 7					

WHIFFLE TREE SUPPORTS CURRENTLY UNDER DEVELOPMENT

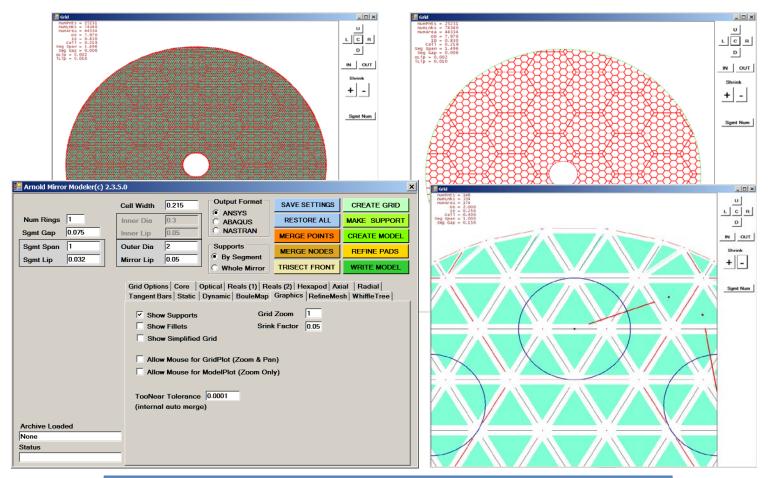
YOU CAN DEFINE LOAD CASES

STATIC, MODAL & PSD

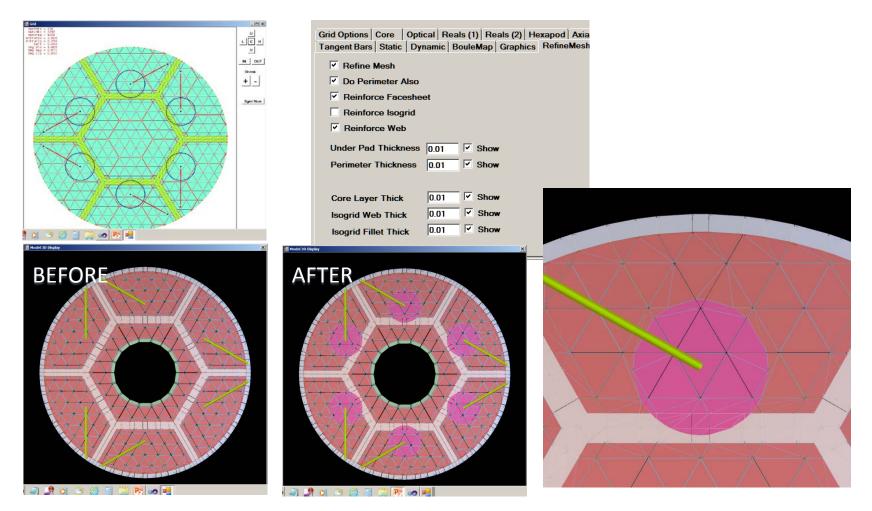

🛃 Arnold Mirror Modeler(c) 2.3	5.0	×	Arnold Mirror Modeler(c) 2.3.5.0
Num Rings 1 Sgmt Gap 0.075 Sgmt Span 1 Sgmt Lip 0.032	Inner Dia 0.3 C ANSYS R Inner Lip 0.05 C ABAQUS R Outer Dia 2 Supports ME Mirror Lip 0.05 F By Segment ME	VVE SETTINGS CREATE GRID ESTORE ALL MAKE SUPPORT RGE POINTS CREATE MODEL ERGE NODES REFINE PADS ISECT FRONT WRITE MODEL	Cell Width 0.215 Output Format Num Rings 1 Inner Dia 0.3 Sgmt Gap 0.075 Inner Lip 0.05 Sgmt Span 1 Outer Dia 2 Sgmt Lip 0.032 Mirror Lip 0.05
Archive Loaded None Status Starting Segment = 7 of 7	Accel X Accel Y Accel Z 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0 9 0 0 0) Hexapod Axial Radial	Grid Options Core Optical Reals (1) Reals (2) Hexapod Axial Radial Tangent Bars Static Dynamic BouleMap Graphics RefineMesh WhiftleTree Calculate Modes num Modes 16 Calculate YPSD g2 0

- ANSYS: GENERATES ANALYSIS STREAM COMPLETE WITH PLOTS AND RESULT FILES
- ABAQUS: GENERATES ANALYSIS STREAM, USES ABAQUS/CAE PYTHON SCRIPT FOR PLOTS & RESULTS
- NASTRAN: GENERATES ANALYSIS STREAM, USES FEMAP OR PATRAN FOR PLOTS & RESULTS

IF ULE[©] BOULE CTE DATA AVAILABLE IT CAN BE MAPPED ONTO THE MODEL

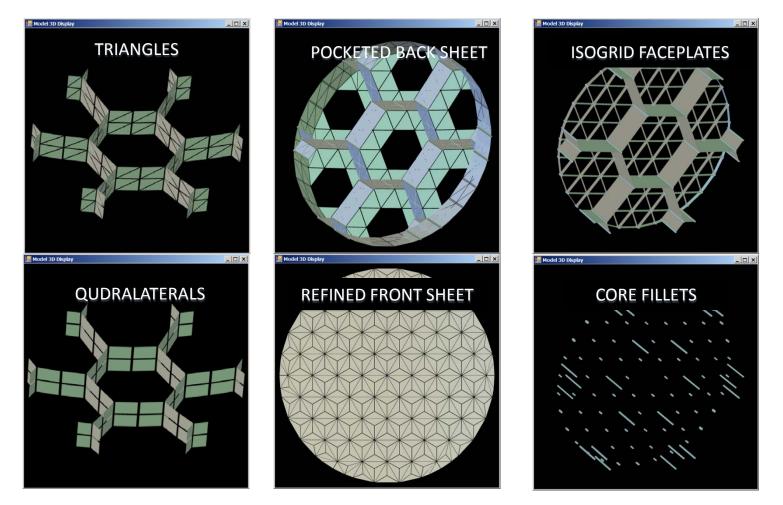


GRID PLOTTING OPTIONS

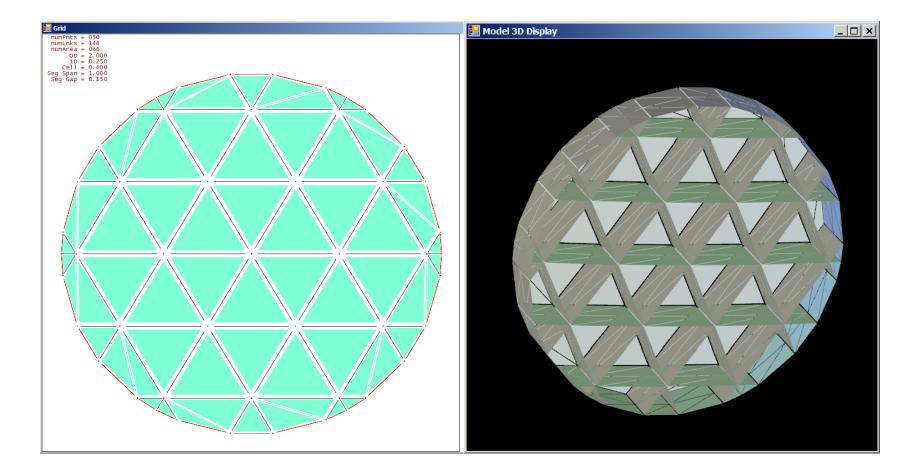


SIMPLIFIED MESH, PAN & ZOOM, ELEMENT SHRINK

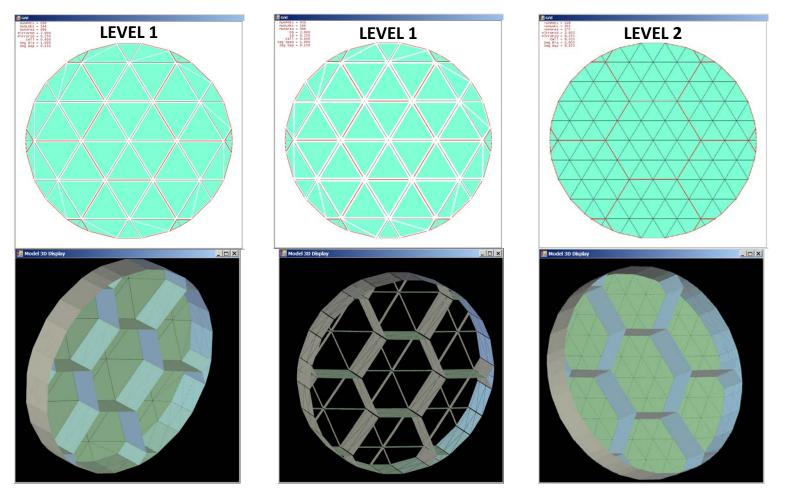
LOCALIZED MESH REFINEMENT UNDER SUPPORT PADS



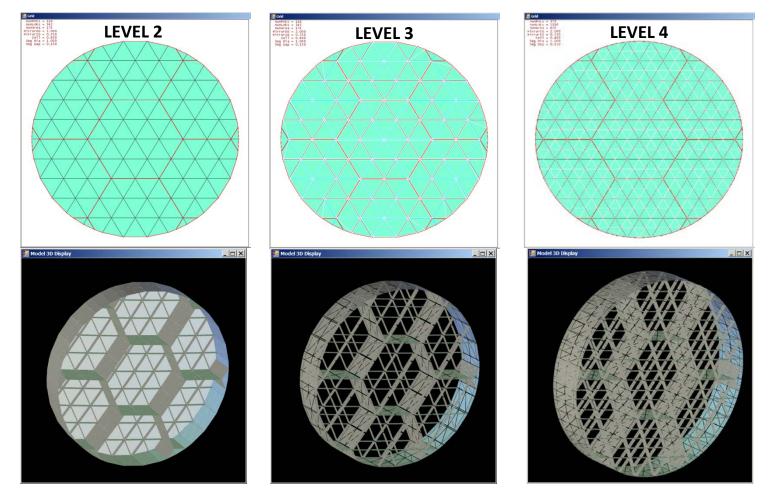
A LOT OF MESHING OPTIONS AVAILABLE



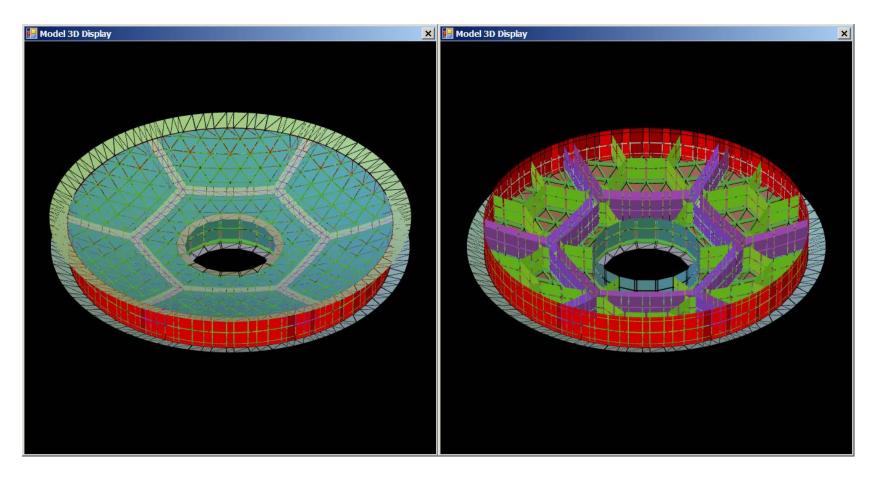
CAN MODEL A PURE ISOGRID CORE [LEVEL0]



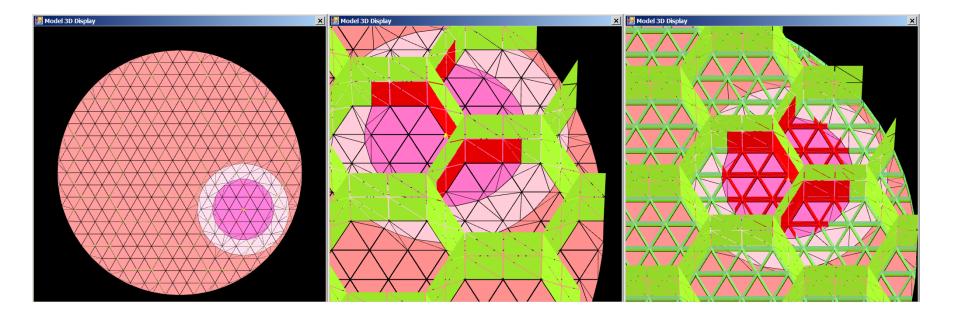
GRID COMPLEXITY LEVELS (CONT)



GRID COMPLEXITY LEVELS (CONT)



MODEL DISPLAY NOW SUPPORTS COLOR-BASED REAL CONSTANTS



LOCALIZED REINFORCEMENT & MESH REFINEMENT UNDER PADS

A perimeter around pad can be reinforced or just mesh refined . The core structure can be stiffened as well as any back facesheet isogrid pattern in region of bond pads.

LASTEST GUI WITH MORE EFFICIENT MESH ALGORITHM

Crid Rustrys - 239 matrize - 565	🛎 🔜 Arnold Mirror Modeler(c) 2	.3.5.0 ×
marke - 788 marke - 788 Cell - 0.185 peg L(p - 0.01	8	Cell Width 0.215 Output Format SAVE SETTINGS CREATE GRID
		Inner Dia 0.3 • ANSYS C ABAQUS RESTORE ALL MAKE SUPPORT
	Sgmt Gap 0.075	Inner Lip 0.05 O NASTRAN MERGE POINTS CREATE MODEL
Sgert No		Outer Dia 2 Supports Mirror Lip 0.05 By Segment
	Sgmt Lip 0.032	Mirror Lip 0.05 Whole Mirror TRISECT FRONT WRITE MODEL
	Model Statistics	Tangent Bars Static Dynamic BouleMap Graphics RefineMesh WhiffleTree
	1895 num Nodes	Grid Options Core Optical Reals (1) Reals (2) Hexapod Axial Radial
	5619 num Elems	
📕 Model 3D Display	64.6235 Weight (kg)	✓ Outer Sgmt Lip ✓ Isogrid Front ○ Cell Level 0
	0.784479 Area (m^2)	Outer Mirror Lip Isogrid Back Cell Level 1
	82.3776 AD (kg/m ²)	✓ Inner Mirror Lip Backface Holes Cell Level 2 Circular Segment Core Projection Cell Level 3
and have	46.88022 Faces (kg)	
	17.74321 Core (kg)	□ Circular Mirror □ Include Fillets ○ Cell Level 4 □ Seal Ring Outer □ Off Center Pattern
	9.227797 Edges (m)	✓ Seal Ring Inner
	0.01574 Milled (m^3)	Seal Ring Mirror Central Hole
		Continuous Seal Rings Omit Central Sgmt
		Segment Lip Ribs Make Quad Elements
	Archive Loaded	Web Centric Grid Variable Facesheet
X XX ANA XX	None	
	Status	
	6 bad aspect ratio elems	

JACOBS DAS

ONLY APPROPRIATE ENTREES ACTIVE FOR INPUT

	🖁 Arnold Mirror Modeler(c) 2.3	3.5.0	×
		Cell Width 0.215 Output Format SAVE SETTINGS CREATE GRID	
Infersion Control Cont	Num Rings 1	Inner Dia 0.3 • ANSYS RESTORE ALL MAKE SUPPORT	
	Sgmt Gap 0.075	Inner Lip 0.05 ONASTRAN MERGE POINTS CREATE MODEL	
	Sgmt Span 1	Outer Dia 2 Supports MERGE NODES REFINE PADS	
	Sgmt Lip 0.032	Mirror Lip 0.05 By Segment TRISECT FRONT WRITE MODEL	
	Model Statistics		
	5508 num Nodes	Tangent Bars Static Dynamic BouleMap Graphics RefineMesh WhiffleTree Grid Options Core Optical Reals (1) Reals (2) Hexapod Axial Radial	
	10471 num Elems	r, 1 0.005 Front Facesheet Show Mirror Material	
Model 3D Display 🔀	200.0832 Weight (kg)	r, 2 0.005 Back Facesheet V Show OULE	
	3.065068 Area (m^2)	r, 3 0.005 Front IsoGrid Web Show C Zerodur	
	65.27857 AD (kg/m ²) 99.21635 Faces (kg)	r, 4 0.005 Segment Outer Seal ⊻ Show C Fused Silica	
THE A A A	99.21635 Faces (kg) 100.8694 Core (kg)	r, 5 0.005 Inner Seal Ring Show OBK7	
te search to the	40.9551 Edges (m)	r, 6 0.005 Core Web Show O Silicon Carbide	
Statements	0 Milled (m^3)	r, 7 0.005 Back IsoGrid Web Show	
A A A A A A A A		r, 9 0.015 Back Outer Seg Lip ▼ Show	
A A A A A A A	Archive Loaded	r, 10 0.015 Isogrid Fillet Front Show	
C S C B C B C B C B C B C B C B C B C B	None	r, 11 0.015 Isogrid Fillet Back Show	
THAN THE	Status NodeMerge 0 elems removed	r, 12 0.015 Mirror Outer Seal Show	
	prodemerge o elems removed		

STATUS

- Currently undergoing ITAR review to determine any distribution restrictions.
- NASA is working on licensing, revision control and error reporting mechanisms.
- User Manual and tutorials under development.
- Short coarse or seminar under discussion.
- List of possible enhancements and requested features growing daily.
- Time permitting are there any questions?