126 research outputs found

    Relevance of nonadiabatic effects in TiOCl

    Full text link
    We analyze the effect of the phonon dynamics on a recently proposed model for the uniform-incommensurate transition seen in TiOX compounds. The study is based on a recently developed formalism for nonadiabatic spin-Peierls systems based on bosonization and a mean field RPA approximation for the interchain coupling. To reproduce the measured low temperature spin gap, a spin-phonon coupling quite bigger than the one predicted from an adiabatic approach is required. This high value is compatible with the renormalization of the phonons in the high temperature phase seen in inelastic x-ray experiments. Our theory accounts for the temperature of the incommensurate transition and the value of the incommensurate wave vector at the transition point.Comment: 4 pages, 2 figure

    Clutter Detection and Surface/Subsurface Slope Determination by Combination of Repeat-Pass Sounder Orbits Applied to SHARAD Data

    Get PDF
    Nadir-looking low-frequency radar sounders cannot easily resolve off-nadir surface returns from the subsurface nadir echoes. Cross-track surface echoes (also named "clutter ") with time delays synchronized with subsurface returns are renowned for being a major challenge for scientists, as they can affect the analysis of orbital radar sounders data. We present a method for clutter discrimination and surface/subsurface slope estimation using data acquired from radar sounders in closely spaced repeated orbits configuration. The method takes advantage of cross-track signal migration to discriminate off-nadir clutter from subsurface signal returns received at the nadir. The migration of the off-nadir signals is also used to determine the clutter direction of arrival (DOA) as well as the surface/subsurface cross-track slopes. The effectiveness of the method has been proven on the Mars Reconnaissance Orbiter (MRO)'s Shallow Radar (SHARAD) dataset and provides a proof-of-concept demonstration for the surface clutter discrimination when radar sounders repeated-passes data are available

    UWB processing applied to multifrequency radar sounders. The case of MARSIS and comparison with SHARAD

    Get PDF
    We readapt ultrawideband (UWB) processing to enhance the range resolution of the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) up to a factor of 6 (25 m). The technique provides for the estimation of radar signature over a wider spectrum via the application of wellknown super-resolution (SR) techniques to adjoining subbands. The measured spectra are first interpolated and then extrapolated outside the original bands. The revised algorithm includes the estimation and removal of ionospheric effects impacting the two signals. Because the processing requires the realignment of the echoes at different frequencies, we derived the maximum tolerable retracking error to obtain reliable super-resolved range profiles. This condition is fulfilled by low-roughness areas compared to MARSIS wavelength, which proves to be suitable for the application of our processing. Examples of super-resolved experimental products over different geological scenarios show the detection of shallow dielectric interfaces not visible from original MARSIS products. Our results are validated by comparison with the Shallow Radar (SHARAD) data acquired at the crossovers, demonstrating the potential of the method to provide enhanced imaging capabilities

    An Analysis of MARSIS Radar Flash Memory Data from Lunae Planum, Mars: Searching for Subsurface Structures

    Get PDF
    Lunae Planum is a Martian plain measuring approximately 1000 km in width and 2000 km in length, centered at coordinates 294°E-11°N. MOLA elevations range from +2500 m to +500 m in the south, gently sloping northward to -500 m. The plain is part of a belt of terrains located between the southern highlands and the northern lowlands, that are transitional in character (e.g., by elevation, age and morphology). These transitional terrains are poorly understood, in part because of their relative lack of major geomorphological features. They record however a very significant part of Mars's geologic history. The most evident features on Lunae Planum's Hesperian surface are regularly spaced, longitudinally striking, wrinkle ridges. These indicate the presence of blind thrust faults cutting through thick stacks of layers of volcanic or sedimentary rocks. The presence of fluidized ejecta craters scattered all over the region suggests also the presence of ice or volatiles in the subsurface. In a preliminary study of Lunae Planum's subsurface we used the Mars Express ground penetrating radar MARSIS dataset [1], in order to detect reflectors that could indicate the presence of fault planes or layering. Standard radargrams however, provided no evidence of changes in value of dielectric constant that could indicate possible geologic discontinuities or stratification of physically diverse materials. We thus started a new investigation based on processing of raw MARSIS data. Here we report on the preliminary results of this study. We searched the MARSIS archive for raw data stored in flash memory. When operating with flash storage, the radar collects 2 frequency bands along-track covering a distance = 100-250 km, depending on the orbiter altitude [2]. We found flash memory data from 24 orbits over the area. We processed the data focusing radar returns in off-nadir directions, to maximize the likelihood of detecting sloping subsurface structures, including those striking parallel to the Mars Express sub-polar orbits. We plan to follow this study by applying a new processor aimed at improving the resolution and signal to noise ratio of the data. [1] Caprarelli et al. (2017), LPSC 48, 1720. [2] Watters et al. (2017), LPSC 48, 1693

    Geologically recent areas as one key target for identifying active volcanism on Venus

    Get PDF
    The recently selected NASA VERITAS and DAVINCI missions, the ESA EnVision, the Roscosmos Venera-D will open a new era in the exploration of Venus. One of the key targets of the future orbiting and in situ investigations of Venus is the identification of volcanically active areas on the planet. The study of the areas characterized by recent or ongoing volcano-tectonic activity can inform us on how volcanism and tectonism are currently evolving on Venus. Following this key target, Brossier et al. (2022, https://doi.org/10.1029/2022GL099765) extend the successful approach and methodology used by previous works to Ganis Chasma in Atla Regio. Here we comment on the main results published in Brossier et al. (2022, https://doi.org/10.1029/2022GL099765) and discuss the important implications of their work for the future orbiting and in situ investigation of Venus. Their results add further lines of evidence indicating possibly recent volcanism on Venus

    Titan's cold case files - Outstanding questions after Cassini-Huygens

    Get PDF
    The entry of the Cassini-Huygens spacecraft into orbit around Saturn in July 2004 marked the start of a golden era in the exploration of Titan, Saturn's giant moon. During the Prime Mission (2004–2008), ground-breaking discoveries were made by the Cassini orbiter including the equatorial dune fields (flyby T3, 2005), northern lakes and seas (T16, 2006), and the large positive and negative ions (T16 & T18, 2006), to name a few. In 2005 the Huygens probe descended through Titan's atmosphere, taking the first close-up pictures of the surface, including large networks of dendritic channels leading to a dried-up seabed, and also obtaining detailed profiles of temperature and gas composition during the atmospheric descent. The discoveries continued through the Equinox Mission (2008–2010) and Solstice Mission (2010–2017) totaling 127 targeted flybys of Titan in all. Now at the end of the mission, we are able to look back on the high-level scientific questions from the start of the mission, and assess the progress that has been made towards answering these. At the same time, new scientific questions regarding Titan have emerged from the discoveries that have been made. In this paper we review a cross-section of important scientific questions that remain partially or completely unanswered, ranging from Titan's deep interior to the exosphere. Our intention is to help formulate the science goals for the next generation of planetary missions to Titan, and to stimulate new experimental, observational and theoretical investigations in the interim

    Possible explosion crater origin of small lake basins with raised rims on Titan

    Get PDF
    The Cassini mission discovered lakes and seas comprising mostly methane in the polar regions of Titan. Lakes of liquid nitrogen may have existed during the epochs of Titan’s past in which methane was photochemically depleted, leaving a nearly pure molecular nitrogen atmosphere and, thus, far colder temperatures. The modern-day small lake basins with sharp edges have been suggested to originate from dissolution processes, due to their morphological similarity to terrestrial karstic lakes. Here we analyse the morphology of the small lake basins that feature raised rims to elucidate their origin, using delay-Doppler processed altimetric and bathymetric data acquired during the last close flyby of Titan by the Cassini spacecraft. We find that the morphology of the raised-rim basins is analogous to that of explosion craters from magma–water interaction on Earth and therefore propose that these basins are from near-surface vapour explosions, rather than karstic. We calculate that the phase transition of liquid nitrogen in the near subsurface during a warming event can generate explosions sufficient to form the basins. Hence, we suggest that raised-rim basins are evidence for one or more warming events terminating a nitrogen-dominated cold episode on Titan

    Titan's cold case files - Outstanding questions after Cassini-Huygens

    Get PDF
    Abstract The entry of the Cassini-Huygens spacecraft into orbit around Saturn in July 2004 marked the start of a golden era in the exploration of Titan, Saturn's giant moon. During the Prime Mission (2004–2008), ground-breaking discoveries were made by the Cassini orbiter including the equatorial dune fields (flyby T3, 2005), northern lakes and seas (T16, 2006), and the large positive and negative ions (T16 & T18, 2006), to name a few. In 2005 the Huygens probe descended through Titan's atmosphere, taking the first close-up pictures of the surface, including large networks of dendritic channels leading to a dried-up seabed, and also obtaining detailed profiles of temperature and gas composition during the atmospheric descent. The discoveries continued through the Equinox Mission (2008–2010) and Solstice Mission (2010–2017) totaling 127 targeted flybys of Titan in all. Now at the end of the mission, we are able to look back on the high-level scientific questions from the start of the mission, and assess the progress that has been made towards answering these. At the same time, new scientific questions regarding Titan have emerged from the discoveries that have been made. In this paper we review a cross-section of important scientific questions that remain partially or completely unanswered, ranging from Titan's deep interior to the exosphere. Our intention is to help formulate the science goals for the next generation of planetary missions to Titan, and to stimulate new experimental, observational and theoretical investigations in the interim
    • 

    corecore