395 research outputs found

    Identification of the bulk pairing symmetry in high-temperature superconductors: Evidence for an extended s-wave with eight line nodes

    Full text link
    we identify the intrinsic bulk pairing symmetry for both electron and hole-doped cuprates from the existing bulk- and nearly bulk-sensitive experimental results such as magnetic penetration depth, Raman scattering, single-particle tunneling, Andreev reflection, nonlinear Meissner effect, neutron scattering, thermal conductivity, specific heat, and angle-resolved photoemission spectroscopy. These experiments consistently show that the dominant bulk pairing symmetry in hole-doped cuprates is of extended s-wave with eight line nodes, and of anisotropic s-wave in electron-doped cuprates. The proposed pairing symmetries do not contradict some surface- and phase-sensitive experiments which show a predominant d-wave pairing symmetry at the degraded surfaces. We also quantitatively explain the phase-sensitive experiments along the c-axis for both Bi_{2}Sr_{2}CaCu_{2}O_{8+y} and YBa_{2}Cu_{3}O_{7-y}.Comment: 11 pages, 9 figure

    Kinetic energy driven superconductivity in doped cuprates

    Full text link
    Within the t-J model, the mechanism of superconductivity in doped cuprates is studied based on the partial charge-spin separation fermion-spin theory. It is shown that dressed holons interact occurring directly through the kinetic energy by exchanging dressed spinon excitations, leading to a net attractive force between dressed holons, then the electron Cooper pairs originating from the dressed holon pairing state are due to the charge-spin recombination, and their condensation reveals the superconducting ground-state. The electron superconducting transition temperature is determined by the dressed holon pair transition temperature, and is proportional to the concentration of doped holes in the underdoped regime. With the common form of the electron Cooper pair, we also show that there is a coexistence of the electron Cooper pair and antiferromagnetic short-range correlation, and hence the antiferromagnetic short-range fluctuation can persist into the superconducting state. Our results are qualitatively consistent with experiments.Comment: 6 pages, Revtex, two figures are included, corrected typo

    Disorder-to-order transition in the magnetic and electronic properties of URh_2Ge_2

    Get PDF
    We present a study of annealing effects on the physical properties of tetragonal single--crystalline URh_2Ge_2. This system, which in as-grown form was recently established as the first metallic 3D random-bond heavy-fermion spin glass, is transformed by an annealing treatment into a long-range antiferromagnetically (AFM) ordered heavy-fermion compound. The transport properties, which in the as-grown material were dominated by the structural disorder, exhibit in the annealed material signs of typical metallic behavior along the crystallographic a axis. From our study URh_2Ge_2 emerges as exemplary material highlighting the role and relevance of structural disorder for the properties of strongly correlated electron systems. We discuss the link between the magnetic and electronic behavior and how they are affected by the structural disorder.Comment: Phys. Rev. B, in print (scheduled 1 Mar 2000

    SETD2 haploinsufficiency for microtubule methylation is an early driver of genomic instability in renal cell carcinoma

    Get PDF
    Loss of the short arm of chromosome 3 (3p) occurs early in >95% of clear cell renal cell carcinoma (ccRCC). Nearly ubiquitous 3p loss in ccRCC suggests haploinsufficiency for 3p tumor suppressors as early drivers of tumorigenesis. We previously reported methyltransferase SETD2, which trimethylates H3 histones on lysine 36 (H3K36me3) and is located in the 3p deletion, to also trimethylate microtubules on lysine 40 (aTubK40me3) during mitosis, with aTubK40me3 required for genomic stability. We now show that monoallelic, Setd2-deficient cells retaining H3K36me3, but not aTubK40me3, exhibit a dramatic increase in mitotic defects and micronuclei count, with increased viability compared with biallelic loss. In SETD2-inactivated human kidney cells, rescue with a pathogenic SETD2 mutant deficient for microtubule (aTubK40me3), but not histone (H3K36me3) methylation, replicated this phenotype. Genomic instability (micronuclei) was also a hallmark of patient-derived cells from ccRCC. These data show that the SETD2 tumor suppressor displays a haploinsufficiency phenotype disproportionately impacting microtubule methylation and serves as an early driver of genomic instability. Significance: Loss of a single allele of a chromatin modifier plays a role in promoting oncogenesis, underscoring the growing relevance of tumor suppressor haploinsufficiency in tumorigenesis

    Nonperturbative renormalization group approach to frustrated magnets

    Full text link
    This article is devoted to the study of the critical properties of classical XY and Heisenberg frustrated magnets in three dimensions. We first analyze the experimental and numerical situations. We show that the unusual behaviors encountered in these systems, typically nonuniversal scaling, are hardly compatible with the hypothesis of a second order phase transition. We then review the various perturbative and early nonperturbative approaches used to investigate these systems. We argue that none of them provides a completely satisfactory description of the three-dimensional critical behavior. We then recall the principles of the nonperturbative approach - the effective average action method - that we have used to investigate the physics of frustrated magnets. First, we recall the treatment of the unfrustrated - O(N) - case with this method. This allows to introduce its technical aspects. Then, we show how this method unables to clarify most of the problems encountered in the previous theoretical descriptions of frustrated magnets. Firstly, we get an explanation of the long-standing mismatch between different perturbative approaches which consists in a nonperturbative mechanism of annihilation of fixed points between two and three dimensions. Secondly, we get a coherent picture of the physics of frustrated magnets in qualitative and (semi-) quantitative agreement with the numerical and experimental results. The central feature that emerges from our approach is the existence of scaling behaviors without fixed or pseudo-fixed point and that relies on a slowing-down of the renormalization group flow in a whole region in the coupling constants space. This phenomenon allows to explain the occurence of generic weak first order behaviors and to understand the absence of universality in the critical behavior of frustrated magnets.Comment: 58 pages, 15 PS figure

    Linear temperature dependence of conductivity in the "insulating" regime of dilute two-dimensional holes in GaAs

    Full text link
    The conductivity of extremely high mobility dilute two-dimensional holes in GaAs changes linearly with temperature in the insulating side of the metal-insulator transition. Hopping conduction, characterized by an exponentially decreasing conductivity with decreasing temperature, is not observed when the conductivity is smaller than e2/he^{2}/h. We suggest that strong interactions in a regime close to the Wigner crystallization must be playing a role in the unusual transport.Comment: 3 pages, 2 figure

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Solar flare prediction using advanced feature extraction, machine learning and feature selection

    Get PDF
    YesNovel machine-learning and feature-selection algorithms have been developed to study: (i) the flare prediction capability of magnetic feature (MF) properties generated by the recently developed Solar Monitor Active Region Tracker (SMART); (ii) SMART's MF properties that are most significantly related to flare occurrence. Spatio-temporal association algorithms are developed to associate MFs with flares from April 1996 to December 2010 in order to differentiate flaring and non-flaring MFs and enable the application of machine learning and feature selection algorithms. A machine-learning algorithm is applied to the associated datasets to determine the flare prediction capability of all 21 SMART MF properties. The prediction performance is assessed using standard forecast verification measures and compared with the prediction measures of one of the industry's standard technologies for flare prediction that is also based on machine learning - Automated Solar Activity Prediction (ASAP). The comparison shows that the combination of SMART MFs with machine learning has the potential to achieve more accurate flare prediction than ASAP. Feature selection algorithms are then applied to determine the MF properties that are most related to flare occurrence. It is found that a reduced set of 6 MF properties can achieve a similar degree of prediction accuracy as the full set of 21 SMART MF properties

    Addition of docetaxel to hormonal therapy in low- and high-burden metastatic hormone sensitive prostate cancer : long-term survival results from the STAMPEDE trial

    Get PDF
    Background STAMPEDE has previously reported that the use of upfront docetaxel improved overall survival (OS) for metastatic hormone naïve prostate cancer patients starting long-term androgen deprivation therapy. We report on long-term outcomes stratified by metastatic burden for M1 patients. Methods We randomly allocated patients in 2 : 1 ratio to standard-of-care (SOC; control group) or SOC + docetaxel. Metastatic disease burden was categorised using retrospectively-collected baseline staging scans where available. Analysis used Cox regression models, adjusted for stratification factors, with emphasis on restricted mean survival time where hazards were non-proportional. Results Between 05 October 2005 and 31 March 2013, 1086 M1 patients were randomised to receive SOC (n = 724) or SOC + docetaxel (n = 362). Metastatic burden was assessable for 830/1086 (76%) patients; 362 (44%) had low and 468 (56%) high metastatic burden. Median follow-up was 78.2 months. There were 494 deaths on SOC (41% more than the previous report). There was good evidence of benefit of docetaxel over SOC on OS (HR = 0.81, 95% CI 0.69–0.95, P = 0.009) with no evidence of heterogeneity of docetaxel effect between metastatic burden sub-groups (interaction P = 0.827). Analysis of other outcomes found evidence of benefit for docetaxel over SOC in failure-free survival (HR = 0.66, 95% CI 0.57–0.76, P  0.5 in each case). There was no evidence that docetaxel resulted in late toxicity compared with SOC: after 1 year, G3-5 toxicity was reported for 28% SOC and 27% docetaxel (in patients still on follow-up at 1 year without prior progression). Conclusions The clinically significant benefit in survival for upfront docetaxel persists at longer follow-up, with no evidence that benefit differed by metastatic burden. We advocate that upfront docetaxel is considered for metastatic hormone naïve prostate cancer patients regardless of metastatic burden
    corecore