19 research outputs found

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Global Climate [in “State of the Climate in 2019"]

    Get PDF
    International audienceGlobal Climate is one chapter from the State of the Climate in 2019 annual report and is avail- able from https://doi.org/10.1175/BAMS-D-20-0104.1 Compiled by NOAA’s National Centers for Environmental Information, State of the Climate in 2019 is based on contributions from scien- tists from around the world. It provides a detailed update on global climate indicators, notable weather events, and other data collected by environmental monitoring stations and instru- ments located on land, water, ice, and in space.The full report is available from https://doi.org/10.1175/2020BAMSStateoftheClimate.1

    Global Climate

    Get PDF
    In 2021, both social and economic activities began to return towards the levels preceding the COVID-19 pandemic for some parts of the globe, with others still experiencing restrictions. Meanwhile, the climate has continued to respond to the ongoing increase in greenhouse gases and resulting warming. La Niña, a phenomenon which tends to depress global temperatures while changing rainfall patterns in many regions, prevailed for all but two months of the year. Despite this, 2021 was one of the six-warmest years on record as measured by global mean surface temperature with an anomaly of between +0.21° and +0.28°C above the 1991–2020 climatology. Lake surface temperatures were their highest on record during 2021. The number of warm days over land also reached a new record high. Exceptional heat waves struck the Pacific Coast of North America, leading to a new Canadian maximum temperature of 49.6°C at Lytton, British Columbia, on 29 June, breaking the previous national record by over 4°C. In Death Valley, California, the peak temperature reached 54.4°C on 9 July, equaling the temperature measured in 2020, and the highest temperature recorded anywhere on the globe since at least the 1930s. Over the Mediterranean, a provisional new European record of 48.8°C was set in Sicily on 11 August. In the atmosphere, the annual mean tropospheric temperature was among the 10 highest on record, while the stratosphere continued to cool. While La Niña was present except for June and July, likely influencing Australia’s coolest year since 2012 and wettest since 2016, other modes of variability played important roles. A negative Indian Ocean dipole event became established during July, associated with a warmer east and cooler west Indian Ocean. Northern Hemisphere winters were affected by a negative phase of the North Atlantic Oscillation at both the beginning and end of 2021. In the Southern Hemisphere, a very strong positive Southern Annular Mode (also known as the Antarctic Oscillation) contributed to New Zealand’s record warm year and to very cold temperatures over Antarctica. Land surface winds continued a slow reversal from the multi-decadal stilling, and over the ocean wind speeds were at their highest in almost a decade. La Niña conditions had a clear influence on the regional patterns of many hydrological variables. Surface specific humidity and total column water vapor over land and ocean were higher than average in almost all datasets. Relative humidity over land reached record or near-record low saturation depending on the dataset, but with mixed signals over the ocean. Satellite measurements showed that 2021 was the third cloudiest in the 19-year record. The story for precipitation was mixed, with just below-average mean precipitation falling over land and below-average mean precipitation falling over the ocean, while extreme precipitation was generally more frequent, but less intense, than average. Differences between means and extremes can be due to several factors, including using different indices, observing periods, climatological base reference periods, and levels of spatial completeness. The sharp increase in global drought area that began in mid-2019 continued in 2021, reaching a peak in August with 32% of global land area experiencing moderate or worse drought, and declining slightly thereafter. Arctic permafrost temperatures continued to rise, reaching record values at many sites, and the thickness of the layer which seasonally thaws and freezes also increased over 2020 values in a number of regions. It was the 34th-consecutive year of mass balance loss for alpine glaciers in mountainous regions, with glaciers on average 25 m thinner than in the late 1970s. And the duration of lake ice in the Northern Hemisphere was the fourth lowest in situ record dating back to 1991. The atmospheric concentrations of the major long-lived greenhouse gases, CO2, CH4, and N2O, all reached levels not seen in at least the last million years and grew at near-record rates in 2021. La Niña conditions did not appear to have any appreciable impact on their growth rates. The growth rate for CH4, of 17 ppb yr−1, was similar to that for 2020 and set yet another record, although the causes for this post-2019 acceleration are unknown presently. Overall, CO2 growth continues to dominate the increase in global radiative forcing, which increased from 3.19 to 3.23 W m−2 (watts per square meter) during the year. In 2021, stratospheric ozone did not exhibit large negative anomalies, especially near the poles, unlike 2020, where large ozone depletions appeared, mainly from dynamical effects. The positive impact of reductions in emissions of ozone depleting substances can be seen most clearly in the upper stratosphere, where such dynamical effects are less pronounced. It was the fourth-lowest fire year since global records began in 2003, though extreme regional fire activity was again seen in North America and also in Siberia; as in 2020, the effects of wildfires in these two regions led to locally large regional positive anomalies in tropospheric aerosol and carbon monoxide abundance. Vegetation is responding to the higher global mean temperatures, with the satellite-derived measures for the Northern Hemisphere for 2021 rated among the earliest starts of the growing season and the latest end of the season on record. The first bloom date for cherry trees in Kyoto, Japan, broke a 600-year record set in 1409. This year we welcome a sidebar on the global distribution of lightning, which has been recently declared an essential climate variable (ECV) by the Global Climate Observing System (GCOS). Time series and anomaly maps from many of the variables described in this chapter can be found in Plates 1.1 and 2.1. As with other chapters, many of the sections have moved from the previous 1981–2010 to the new 1991–2020 climatological reference period, in line with WMO recommendations (see Chapter 1). This is not possible for all datasets, as it is dependent on their length of record or legacy processing methods. While anomalies from the new climatology period are not so easily comparable with previous editions of this report, they more clearly highlight deviations from more recent conditions

    State of the climate in 2017

    No full text

    State of the climate in 2016

    No full text

    State of the climate in 2014

    No full text
    Most of the dozens of essential climate variables monitored each year in this report continued to follow their long-term trends in 2014, with several setting new records. Carbon dioxide, methane, and nitrous oxide-the major greenhouse gases released into Earth's atmosphere-once again all reached record high average atmospheric concentrations for the year. Carbon dioxide increased by 1.9 ppm to reach a globally averaged value of 397.2 ppm for 2014. Altogether, 5 major and 15 minor greenhouse gases contributed 2.94 W m-2 of direct radiative forcing, which is 36% greater than their contributions just a quarter century ago. Accompanying the record-high greenhouse gas concentrations was nominally the highest annual global surface temperature in at least 135 years of modern record keeping, according to four independent observational analyses. The warmth was distributed widely around the globe's land areas, Europe observed its warmest year on record by a large margin, with close to two dozen countries breaking their previous national temperature records; many countries in Asia had annual temperatures among their 10 warmest on record; Africa reported above-average temperatures across most of the continent throughout 2014; Australia saw its third warmest year on record, following record heat there in 2013; Mexico had its warmest year on record; and Argentina and Uruguay each had their second warmest year on record. Eastern North America was the only major region to observe a below-average annual temperature. But it was the oceans that drove the record global surface temperature in 2014. Although 2014 was largely ENSO-neutral, the globally averaged sea surface temperature (SST) was the highest on record. The warmth was particularly notable in the North Pacific Ocean where SST anomalies signaled a transition from a negative to positive phase of the Pacific decadal oscillation. In the winter of 2013/14, unusually warm water in the northeast Pacific was associated with elevated ocean heat content anomalies and elevated sea level in the region. Globally, upper ocean heat content was record high for the year, reflecting the continued increase of thermal energy in the oceans, which absorb over 90% of Earth's excess heat from greenhouse gas forcing. Owing to both ocean warming and land ice melt contributions, global mean sea level in 2014 was also record high and 67 mm greater than the 1993 annual mean, when satellite altimetry measurements began. Sea surface salinity trends over the past decade indicate that salty regions grew saltier while fresh regions became fresher, suggestive of an increased hydrological cycle over the ocean expected with global warming. As in previous years, these patterns are reflected in 2014 subsurface salinity anomalies as well. With a now decade-long trans-basin instrument array along 26°N, the Atlantic meridional overturning circulation shows a decrease in transport of-4.2 ± 2.5 Sv decade-1. Precipitation was quite variable across the globe. On balance, precipitation over the world's oceans was above average, while below average across land surfaces. Drought continued in southeastern Brazil and the western United States. Heavy rain during April-June led to devastating floods in Canada's Eastern Prairies. Above-normal summer monsoon rainfall was observed over the southern coast of West Africa, while drier conditions prevailed over the eastern Sahel. Generally, summer monsoon rainfall over eastern Africa was above normal, except in parts of western South Sudan and Ethiopia. The south Asian summer monsoon in India was below normal, with June record dry. Across the major tropical cyclone basins, 91 named storms were observed during 2014, above the 1981-2010 global average of 82. The Eastern/Central Pacific and South Indian Ocean basins experienced significantly above-normal activity in 2014; all other basins were either at or below normal. The 22 named storms in the Eastern/Central Pacific was the basin's most since 1992. Similar to 2013, the North Atlantic season was quieter than most years of the last two decades with respect to the number of storms, despite the absence of El Niño conditions during both years. In higher latitudes and at higher elevations, increased warming continued to be visible in the decline of glacier mass balance, increasing permafrost temperatures, and a deeper thawing layer in seasonally frozen soil. In the Arctic, the 2014 temperature over land areas was the fourth highest in the 115-year period of record and snow melt occurred 20-30 days earlier than the 1998-2010 average. The Greenland Ice Sheet experienced extensive melting in summer 2014. The extent of melting was above the 1981-2010 average for 90% of the melt season, contributing to the second lowest average summer albedo over Greenland since observations began in 2000 and a record-low albedo across the ice sheet for August. On the North Slope of Alaska, new record high temperatures at 20-m depth were measured at four of five permafrost observatories. In September, Arctic minimum sea ice extent was the sixth lowest since satellite records began in 1979. The eight lowest sea ice extents during this period have occurred in the last eight years. Conversely, in the Antarctic, sea ice extent countered its declining trend and set several new records in 2014, including record high monthly mean sea ice extent each month from April to November. On 20 September, a record large daily Antarctic sea ice extent of 20.14 × 106 km2 occurred. The 2014 Antarctic stratospheric ozone hole was 20.9 million km2 when averaged from 7 September to 13 October, the sixth smallest on record and continuing a decrease, albeit statistically insignificant, in area since 1998
    corecore