21 research outputs found

    multicentre analysis, I-MOVE-COVID-19 and ECDC networks, July to August 2021

    Get PDF
    Funding Information: This project received funding from the European Centre for Disease Prevention and Control (ECDC) under the contract ECD.11486. Funding Information: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101003673. Publisher Copyright: © 2022 European Centre for Disease Prevention and Control (ECDC). All rights reserved.Introduction: In July and August 2021, the SARS-CoV-2 Delta variant dominated in Europe. Aim: Using a multicentre test-negative study, we measured COVID-19 vaccine effectiveness (VE) against symptomatic infection. Methods: Individuals with COVID-19 or acute respiratory symptoms at primary care/community level in 10 European countries were tested for SARS-CoV-2. We measured complete primary course overall VE by vaccine brand and by time since vaccination. Results: Overall VE was 74% (95% CI: 69-79), 76% (95% CI: 71-80), 63% (95% CI: 48-75) and 63% (95% CI: 16-83) among those aged 30-44, 45-59, 60-74 and ≥ 75 years, respectively. VE among those aged 30-59 years was 78% (95% CI: 75-81), 66% (95% CI: 58-73), 91% (95% CI: 87-94) and 52% (95% CI: 40-61), for Comirnaty, Vaxzevria, Spikevax and COVID-19 Vaccine Janssen, respectively. VE among people 60 years and older was 67% (95% CI: 52-77), 65% (95% CI: 48-76) and 83% (95% CI: 64-92) for Comirnaty, Vaxzevria and Spikevax, respectively. Comirnaty VE among those aged 30-59 years was 87% (95% CI: 83-89) at 14-29 days and 65% (95% CI: 56-71%) at ≥ 90 days between vaccination and onset of symptoms. Conclusions: VE against symptomatic infection with the SARS-CoV-2 Delta variant varied among brands, ranging from 52% to 91%. While some waning of the vaccine effect may be present (sample size limited this analysis to only Comirnaty), protection was 65% at 90 days or more between vaccination and onset.publishersversionpublishe

    Genome-wide associations for birth weight and correlations with adult disease

    Get PDF
    Birth weight (BW) is influenced by both foetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease1. These lifecourse associations have often been attributed to the impact of an adverse early life environment. We performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where foetal genotype was associated with BW (P <5x10-8). Overall, ˜15% of variance in BW could be captured by assays of foetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (rg-0.22, P =5.5x10-13), T2D (rg-0.27, P =1.1x10-6) and coronary artery disease (rg-0.30, P =6.5x10-9) and, in large cohort data sets, demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P =1.9x10-4). We have demonstrated that lifecourse associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and have highlighted some of the pathways through which these causal genetic effects are mediated

    Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors.

    Get PDF
    Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.The Fenland Study is funded by the Medical Research Council (MC_U106179471) and Wellcome Trust

    The LifeCycle Project-EU Child Cohort Network : a federated analysis infrastructure and harmonized data of more than 250,000 children and parents

    Get PDF
    Early life is an important window of opportunity to improve health across the full lifecycle. An accumulating body of evidence suggests that exposure to adverse stressors during early life leads to developmental adaptations, which subsequently affect disease risk in later life. Also, geographical, socio-economic, and ethnic differences are related to health inequalities from early life onwards. To address these important public health challenges, many European pregnancy and childhood cohorts have been established over the last 30 years. The enormous wealth of data of these cohorts has led to important new biological insights and important impact for health from early life onwards. The impact of these cohorts and their data could be further increased by combining data from different cohorts. Combining data will lead to the possibility of identifying smaller effect estimates, and the opportunity to better identify risk groups and risk factors leading to disease across the lifecycle across countries. Also, it enables research on better causal understanding and modelling of life course health trajectories. The EU Child Cohort Network, established by the Horizon2020-funded LifeCycle Project, brings together nineteen pregnancy and childhood cohorts, together including more than 250,000 children and their parents. A large set of variables has been harmonised and standardized across these cohorts. The harmonized data are kept within each institution and can be accessed by external researchers through a shared federated data analysis platform using the R-based platform DataSHIELD, which takes relevant national and international data regulations into account. The EU Child Cohort Network has an open character. All protocols for data harmonization and setting up the data analysis platform are available online. The EU Child Cohort Network creates great opportunities for researchers to use data from different cohorts, during and beyond the LifeCycle Project duration. It also provides a novel model for collaborative research in large research infrastructures with individual-level data. The LifeCycle Project will translate results from research using the EU Child Cohort Network into recommendations for targeted prevention strategies to improve health trajectories for current and future generations by optimizing their earliest phases of life.Peer reviewe

    Genome-wide associations for birth weight and correlations with adult disease

    Get PDF
    Birth weight (BW) has been shown to be influenced by both fetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease. These life-course associations have often been attributed to the impact of an adverse early life environment. Here, we performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where fetal genotype was associated with BW (P\textit{P}  < 5 × 108^{-8}). Overall, approximately 15% of variance in BW was captured by assays of fetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (R\textit{R}g_{g} = -0.22, P\textit{P}  = 5.5 × 1013^{-13}), T2D (R\textit{R}g_{g} = -0.27, P\textit{P}  = 1.1 × 106^{-6}) and coronary artery disease (R\textit{R}g_{g} = -0.30, P\textit{P}  = 6.5 × 109^{-9}). In addition, using large -cohort datasets, we demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P\textit{P} = 1.9 × 104^{-4}). We demonstrate that life-course associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and identify some of the pathways through which these causal genetic effects are mediated.For a full list of the funders pelase visit the publisher's website and look at the supplemetary material provided. Some of the funders are: British Heart Foundation, Cancer Research UK, Medical Research Council, National Institutes of Health, Royal Society and Wellcome Trust

    COVID-19 vaccine effectiveness against SARS-CoV-2 infection during the Delta period, a nationwide study adjusting for chance of exposure, the Netherlands, July to December 2021.

    No full text
    BACKGROUND: Differential SARS-CoV-2 exposure between vaccinated and unvaccinated individuals may confound vaccine effectiveness (VE) estimates. AIM: We conducted a test-negative case–control study to determine VE against SARS-CoV-2 infection and the presence of confounding by SARS-CoV-2 exposure. METHODS: We included adults tested for SARS-CoV-2 at community facilities between 4 July and 8 December 2021 (circulation period of the Delta variant). The VE against SARS-CoV-2 infection after primary vaccination with an mRNA (Comirnaty or Spikevax) or vector-based vaccine (Vaxzevria or Janssen) was calculated using logistic regression adjusting for age, sex and calendar week (Model 1). We additionally adjusted for comorbidity and education level (Model 2) and SARS-CoV-2 exposure (number of close contacts, visiting busy locations, household size, face mask wearing, contact with SARS-CoV-2 case; Model 3). We stratified by age, vaccine type and time since vaccination. RESULTS: VE against infection (Model 3) was 64% (95% CI: 50–73), only slightly lower than in Models 1 (68%; 95% CI: 58–76) and 2 (67%; 95% CI: 56–75). Estimates stratified by age group, vaccine and time since vaccination remained similar: mRNA VE (Model 3) among people ≥ 50 years decreased significantly (p = 0.01) from 81% (95% CI: 66–91) at < 120 days to 61% (95% CI: 22–80) at ≥ 120 days after vaccination. It decreased from 83% to 59% in Model 1 and from 81% to 56% in Model 2. CONCLUSION: SARS-CoV-2 exposure did not majorly confound the estimated COVID-19 VE against infection, suggesting that VE can be estimated accurately using routinely collected data without exposure information

    Correlates of Physical Activity in 2-Year-Old Toddlers:The Generation R Study

    No full text
    <p>Objective To describe and identify correlates of objectively measured physical activity and sedentary behavior in 2-year-old toddlers.</p><p>Study design A total of 347 children participating in a birth cohort study wore a unaxial ActiGraph accelerometer during 1 weekday and 1 weekend day. Information on potential correlates was assessed by parent-reported questionnaires, delivery reports, and regular visits to child health centers. Univariate and multivariable linear regression analyses were conducted to examine the associations between potential correlates and the following physical activity outcomes: percentage of time spent in sedentary behavior, percentage of time spent in moderate-to-vigorous physical activity, and mean counts per minute.</p><p>Results A high percentage of monitored time was spent in sedentary behavior; 85.6% on weekdays and 84.5% on weekend days. Four correlates were significantly associated with at least 1 physical activity outcome in the multivariable regression models: child's sex, child's age, number of siblings, and season of measurement. The associations of gross motor development with moderate-to-vigorous physical activity and mean counts per minute approached significance. Associations of socioeconomic variables and child's body mass index z-score with physical activity outcomes were not significant.</p><p>Conclusion Two-year-old toddlers spend most of their time in sedentary behavior. No modifiable correlates were identified. Further research on physical activity and associated health benefits among very young children is warranted.</p>

    Differences in birth weight between immigrants' and natives' children in Europe and Australia: a LifeCycle comparative observational cohort study

    No full text
    OBJECTIVE: Research on adults has identified an immigrant health advantage, known as the 'immigrant health paradox', by which migrants exhibit better health outcomes than natives. Is this health advantage transferred from parents to children in the form of higher birth weight relative to children of natives? SETTING: Western Europe and Australia. PARTICIPANTS: We use data from nine birth cohorts participating in the LifeCycle Project, including five studies with large samples of immigrants' children: Etude Longitudinale Française depuis l'Enfance-France (N=12 494), the Raine Study-Australia (N=2283), Born in Bradford-UK (N=4132), Amsterdam Born Children and their Development study-Netherlands (N=4030) and the Generation R study-Netherlands (N=4877). We include male and female babies born to immigrant and native parents. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome is birth weight measured in grams. Different specifications were tested: birth weight as a continuous variable including all births (DV1), the same variable but excluding babies born with over 4500 g (DV2), low birth weight as a 0-1 binary variable (1=birth weight below 2500 g) (DV3). Results using these three measures were similar, only results using DV1 are presented. Parental migration status is measured in four categories: both parents natives, both born abroad, only mother born abroad and only father born abroad. RESULTS: Two patterns in children's birth weight by parental migration status emerged: higher birth weight among children of immigrants in France (+12 g, p<0.10) and Australia (+40 g, p<0.10) and lower birth weight among children of immigrants in the UK (-82 g, p<0.05) and the Netherlands (-80 g and -73 g, p<0.001) compared with natives' children. Smoking during pregnancy emerged as a mechanism explaining some of the birth weight gaps between children of immigrants and natives. CONCLUSION: The immigrant health advantage is not universally transferred to children in the form of higher birth weight in all host countries. Further research should investigate whether this cross-national variation is due to differences in immigrant communities, social and healthcare contexts across host countries

    Differences in birth weight between immigrants' and natives' children in Europe and Australia: a LifeCycle comparative observational cohort study

    Get PDF
    OBJECTIVE: Research on adults has identified an immigrant health advantage, known as the 'immigrant health paradox', by which migrants exhibit better health outcomes than natives. Is this health advantage transferred from parents to children in the form of higher birth weight relative to children of natives? SETTING: Western Europe and Australia. PARTICIPANTS: We use data from nine birth cohorts participating in the LifeCycle Project, including five studies with large samples of immigrants' children: Etude Longitudinale Française depuis l'Enfance-France (N=12 494), the Raine Study-Australia (N=2283), Born in Bradford-UK (N=4132), Amsterdam Born Children and their Development study-Netherlands (N=4030) and the Generation R study-Netherlands (N=4877). We include male and female babies born to immigrant and native parents. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome is birth weight measured in grams. Different specifications were tested: birth weight as a continuous variable including all births (DV1), the same variable but excluding babies born with over 4500 g (DV2), low birth weight as a 0-1 binary variable (1=birth weight below 2500 g) (DV3). Results using these three measures were similar, only results using DV1 are presented. Parental migration status is measured in four categories: both parents natives, both born abroad, only mother born abroad and only father born abroad. RESULTS: Two patterns in children's birth weight by parental migration status emerged: higher birth weight among children of immigrants in France (+12 g, p<0.10) and Australia (+40 g, p<0.10) and lower birth weight among children of immigrants in the UK (-82 g, p<0.05) and the Netherlands (-80 g and -73 g, p<0.001) compared with natives' children. Smoking during pregnancy emerged as a mechanism explaining some of the birth weight gaps between children of immigrants and natives. CONCLUSION: The immigrant health advantage is not universally transferred to children in the form of higher birth weight in all host countries. Further research should investigate whether this cross-national variation is due to differences in immigrant communities, social and healthcare contexts across host countries
    corecore