23 research outputs found

    Molecular evidence for Mycobacterium bovis infection in wild Chilean hawk (Accipiter chilensis)

    Get PDF
    The present study reports a case of tuberculosis in a juvenile Chilean hawk (Accipiter chilensis). Granulomas were identified in the liver, intestine and mesentery. Several of these granulomas contained acid-fast bacilli suggesting a mycobacterial infection through ingestion. Molecular diagnosis detected Mycobacterium bovis as etiological agent. Whether M. bovis infection in this Chilean hawk represents a risk for other wildlife, livestock or humans remains to be determined

    Is Xenopus laevis introduction linked with Ranavirus incursion, persistence and spread in Chile?

    Get PDF
    Ranaviruses have been associated with amphibian, fish and reptile mortality events worldwide and with amphibian population declines in parts of Europe. Xenopus laevis is a widespread invasive amphibian species in Chile. Recently, Frog virus 3 (FV3), the type species of the Ranavirus genus, was detected in two wild populations of this frog near Santiago in Chile, however, the extent of ranavirus infection in this country remains unknown. To obtain more information about the origin of ranavirus in Chile, its distribution, species affected, and the role of invasive amphibians and freshwater fish in the epidemiology of ranavirus, a surveillance study comprising wild and farmed amphibians and wild fish over a large latitudinal gradient (2,500 km) was carried out in 2015–2017. In total, 1,752 amphibians and 496 fish were tested using a ranavirus-specific qPCR assay, and positive samples were analyzed for virus characterization through whole genome sequencing of viral DNA obtained from infected tissue. Ranavirus was detected at low viral loads in nine of 1,011 X. laevis from four populations in central Chile. No other amphibian or fish species tested were positive for ranavirus, suggesting ranavirus is not threatening native Chilean species yet. Phylogenetic analysis of partial ranavirus sequences showed 100% similarity with FV3. Our results show a restricted range of ranavirus infection in central Chile, coinciding with X. laevis presence, and suggest that FV3 may have entered the country through infected X. laevis, which appears to act as a competent reservoir host, and may contribute to the spread the virus locally as it invades new areas, and globally through the pet trade

    Spirocerca lupi in the stomach of two Andean foxes (Lycalopex culpaeus) from Chile

    Get PDF
    The genus Spirocerca includes nematodes that parasitize the stomach and the oesophagus of carnivores, chiefly canids. Herein, we provide new data about the morphological, histopathological, and molecular characterization of Spirocerca sp. in Andean foxes (Lycalopex culpaeus) in Chile. Intact immature worms, identified as Spirocerca sp., were recovered in the lumen of the stomach from two foxes. Histologically, worms morphologically consistent with spirurid nematodes were present within the wall of the stomach and surrounded by nodular areas of inflammation with central necrotic debris. Molecular analysis of the cox1 gene yielded 19 sequences and 5 nucleotide sequence types with 99.95 to 99.98% similarity, being shared between both foxes. Nucleotide similarity ranged from 93.1 (with genotype 2 of S. lupi and S. vulpis) to 95.8% (with genotype 1 of S. lupi), a higher similarity than noted from sequences of S. lupi from an Andean fox from Peru (91.0 to 93.3%). However, the Poisson Tree Processes for species delineation did not support the existence of a new species Spirocerca. Phylogenetic and nucleotide analyses suggest that these specimens belong to a new variant or genotype of S. lupi or to a cryptic species. Whether the presence of the worms in the stomach has to do with genotypic differences in parasites or host or some combination is uncertain. Spirocerca lupi has never been found in Chilean dogs and must be investigated

    Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi

    Get PDF
    T.W.J.G., M.C.F., D.S.S., A.L., E.C., F.C.C., J.B., A.A.C., C.M., F.S., B.R.S., S.O., were supported through the Biodiversa project RACE: Risk Assessment of Chytridiomycosis to European Amphibian Biodiversity (NERC standard grant NE/K014455/1 and NE/E006701/1; ANR-08-BDVA-002-03). M.C.F., J.S., C.W., P.G. were supported by the Leverhulme Trust (RPG-2014-273), M.C.F., A.C., C.W. were supported by the Morris Animal Foundation. J.V. was supported by the Bolyai JĂĄnos Research Grant of the Hunagrian Academy of Sciences (BO/00597/14). F.G. and D.G. were supported by the Conservation Leadership Programme Future Conservationist Award. C.S.A. was supported by Fondecyt (No. 1181758). M.C.F. and A.C. were supported by. Mohamed bin Zayed Species Conservation Fund Project (152510704). GMR held a doctoral scholarship (SFRH/BD/69194/2010) from Fundação para a CiĂȘncia e a Tecnologia. L.F.T., C.L., L.P.R. K.R.Z., T.Y.J., T.S.J. were supported by SĂŁo Paulo Research Foundation (FAPESP #2016/25358-3), the National Counsel of Technological and Scientific Development (CNPq #300896/2016–6) and a Catalyzing New International Collaborations grant from the United States NSF (OISE-1159513). C.S.A. was supported by Fondecyt (No. 1181758). T.M.D. was supported by the Royal Geographical Society and the Royal Zoological Society of Scotland. B.W. was supported by the National Research Foundation of Korea (2015R1D1A1A01057282).Peer reviewedPublisher PD

    Recent Asian origin of chytrid fungi causing global amphibian declines

    Get PDF
    Globalized infectious diseases are causing species declines worldwide, but their source often remains elusive. We used whole-genome sequencing to solve the spatiotemporal origins of the most devastating panzootic to date, caused by the fungus Batrachochytrium dendrobatidis, a proximate driver of global amphibian declines. We traced the source of B. dendrobatidis to the Korean peninsula, where one lineage, BdASIA-1, exhibits the genetic hallmarks of an ancestral population that seeded the panzootic. We date the emergence of this pathogen to the early 20th century, coinciding with the global expansion of commercial trade in amphibians, and we show that intercontinental transmission is ongoing. Our findings point to East Asia as a geographic hotspot for B. dendrobatidis biodiversity and the original source of these lineages that now parasitize amphibians worldwide

    Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi

    Get PDF
    © The Author(s) 2018.Parasitic chytrid fungi have emerged as a significant threat to amphibian species worldwide, necessitating the development of techniques to isolate these pathogens into culture for research purposes. However, early methods of isolating chytrids from their hosts relied on killing amphibians. We modified a pre-existing protocol for isolating chytrids from infected animals to use toe clips and biopsies from toe webbing rather than euthanizing hosts, and distributed the protocol to researchers as part of the BiodivERsA project RACE; here called the RML protocol. In tandem, we developed a lethal procedure for isolating chytrids from tadpole mouthparts. Reviewing a database of use a decade after their inception, we find that these methods have been applied across 5 continents, 23 countries and in 62 amphibian species. Isolation of chytrids by the non-lethal RML protocol occured in 18% of attempts with 207 fungal isolates and three species of chytrid being recovered. Isolation of chytrids from tadpoles occured in 43% of attempts with 334 fungal isolates of one species (Batrachochytrium dendrobatidis) being recovered. Together, these methods have resulted in a significant reduction and refinement of our use of threatened amphibian species and have improved our ability to work with this group of emerging pathogens.T.W.J.G., M.C.F., D.S.S., A.L., E.C., F.C.C., J.B., A.A.C., C.M., F.S., B.R.S., S.O., were supported through the Biodiversa project RACE: Risk Assessment of Chytridiomycosis to European Amphibian Biodiversity (NERC standard grant NE/K014455/1 and NE/E006701/1; ANR-08-BDVA-002-03). M.C.F., J.S., C.W., P.G. were supported by the Leverhulme Trust (RPG-2014-273), M.C.F., A.C., C.W. were supported by the Morris Animal Foundation. J.V. was supported by the Bolyai JĂĄnos Research Grant of the Hunagrian Academy of Sciences (BO/00597/14). F.G. and D.G. were supported by the Conservation Leadership Programme Future Conservationist Award. C.S.A. was supported by Fondecyt (No. 1181758). M.C.F. and A.C. were supported by. Mohamed bin Zayed Species Conservation Fund Project (152510704). GMR held a doctoral scholarship (SFRH/ BD/69194/2010) from Fundação para a CiĂȘncia e a Tecnologia. L.F.T., C.L., L.P.R. K.R.Z., T.Y.J., T.S.J. were supported by SĂŁo Paulo Research Foundation (FAPESP #2016/25358-3), the National Counsel of Technological and Scientifc Development (CNPq #300896/2016–6) and a Catalyzing New International Collaborations grant from the United States NSF (OISE-1159513). C.S.A. was supported by Fondecyt (No. 1181758). T.M.D. was supported by the Royal Geographical Society and the Royal Zoological Society of Scotland. B.W. was supported by the National Research Foundation of Korea (2015R1D1A1A01057282).Peer Reviewe

    A flagship for Austral temperate forest conservation: an action plan for Darwin's frogs brings key stakeholders together

    Get PDF
    Darwin’s frogs Rhinoderma darwinii and Rhinoderma rufum are the only known species of amphibians in which males brood their offspring in their vocal sacs. We propose these frogs as flagship species for the conservation of the Austral temperate forests of Chile and Argentina. This recommendation forms part of the vision of the Binational Conservation Strategy for Darwin’s Frogs, which was launched in 2018. The strategy is a conservation initiative led by the IUCN SSC Amphibian Specialist Group, which in 2017 convened 30 governmental, non-profit and private organizations from Chile, Argentina and elsewhere. Darwin’s frogs are iconic examples of the global amphibian conservation crisis: R. rufum is categorized as Critically Endangered (Possibly Extinct) on the IUCN Red List, and R. darwinii as Endangered. Here we articulate the conservation planning process that led to the development of the conservation strategy for these species and present its main findings and recommendations. Using an evidence-based approach, the Binational Conservation Strategy for Darwin’s Frogs contains a comprehensive status review of Rhinoderma spp., including critical threat analyses, and proposes 39 prioritized conservation actions. Its goal is that by 2028, key information gaps on Rhinoderma spp. will be filled, the main threats to these species will be reduced, and financial, legal and societal support will have been achieved. The strategy is a multi-disciplinary, transnational endeavour aimed at ensuring the long-term viability of these unique frogs and their particular habitat

    A review of piroplasmid infections in wild carnivores worldwide : importance for domestic animal health and wildlife conservation

    Get PDF
    Piroplasmids are tick-borne protozoan parasites that infect blood cells (erythrocytes, lymphocytes or other leukocytes) or endothelial cells of numerous wild and domestic vertebrates worldwide. They cause severe disease in livestock, dogs, cats, wild mammals and, occasionally, in humans. Piroplasmid infections are prevalent in wild carnivores worldwide although there is limited information about their clinical and epidemiological importance. There are currently nine recognized species of Babesia, two of Theileria, two of Cytauxzoon and one of Rangelia infecting captive and wild carnivores, including members of Canidae, Felidae, Mustelidae, Procyonidae, Ursidae, Viverridae, Hyaenidae and Herpestidae in the Americas, Eurasia and Africa. However, the number of piroplasmid species is likely higher than currently accepted due to the reported existence of DNA sequences that may correspond to new species and the lack of studies on many host species and biogeographical areas. Indeed, many species have been recognized in the last few years with the advancement of molecular analyses. Disease and mortality have been documented in some wild carnivores, whereas other species appear to act as natural, subclinical reservoirs. Various factors (e.g. unnatural hosts, stress due to captivity, habitat degradation, climate fluctuation or immunosuppression) have been associated with disease susceptibility to piroplasmid infections in some species in captivity. We aimed to review the current knowledge on the epidemiology of piroplasmid infections in wild carnivores and associated tick vectors. Emphasis is given to the role of wild carnivores as reservoirs of clinical piroplasmosis for domestic dogs and cats, and to the importance of piroplasmids as disease agents for endangered carnivores

    The amphibian‐killing fungus in a biodiversity hotspot: identifying and validating high‐risk areas and refugia

    No full text
    Abstract Amphibian chytridiomycosis, due to infection with the fungus Batrachochytrium dendrobatidis (Bd), has been associated with the alarming decline and extinction crisis of amphibians worldwide. It is essential for conservation management to identify regions with high or low suitability for Bd. We use a species distribution model to estimate the environmental suitability of Bd in the Chilean Winter Rainfall–Valdivian Forest biodiversity hotspot. Fourteen environmental variables were used as predictors in the statistical modeling (Maxent, generalized linear models, random forest) which also included 56 independent Bd+ localities. High‐risk areas (i.e., suitability above a defined threshold) were validated through prospective field surveys conducted in 2017. As results from Maxent, which only uses presence data, were the only results retained, refugia (i.e., suitability below a defined threshold) were validated with the Bd absences (N = 12) used in the GLM and RF modeling. Our results showed that (1) suitability for Bd increased with human footprint and with shorter distances to urban centers and water bodies and decreased with elevation; (2) climate was not a major factor shaping the current distribution of Bd; and (3) the model predicted high‐risk and refugia areas fairly well. Surveys of 24 new localities in high‐risk areas confirmed that 23 were Bd+; hence, these areas warrant consideration for long‐term Bd surveillance, population monitoring, and disease mitigation. In addition, five localities with apparent Bd absence were found in the predicted high‐risk areas. Our models showed that refugia can exist near high‐risk areas and Bd+ sites. Four localities with apparent Bd absence were located within the refugia predicted by the model. Preventing Bd transmission to such refugia is of paramount importance for persistence of Bd‐susceptible amphibian populations. The identification and validation through prospective field surveys of high‐risk areas and refugia are imperative to develop strategies to prevent further arrival and establishment of Bd and also, by identifying amphibian species or populations of conservation concern in such areas, will help to guide specific actions to reduce the biodiversity loss caused by chytridiomycosis
    corecore