54 research outputs found

    Spin density wave anomaly at 140 K in the ternary iron arsenide BaFe2As2

    Full text link
    The ternary iron arsenide BaFe2As2 with the tetragonal ThCr2Si2-type structure exhibits a spin density wave (SDW) anomaly at 140 K, very similar to LaFeAsO, the parent compound of the iron arsenide superconductors. BaFe2As2 is a poor Pauli-paramagnetic metal and undergoes a structural and magnetic phase transition at 140 K, accompanied by strong anomalies in the specific heat, electrical resistance and magnetic susceptibility. In the course of this transition, the space group symmetry changes from tetragonal (I4/mmm) to orthorhombic (Fmmm). 57Fe Moessbauer spectroscopy experiments show a single signal at room temperature and full hyperfine field splitting below the phase transition temperature (5.2 T at 77 K). Our results suggest that BaFe2As2 can serve as a new parent compound for oxygen-free iron arsenide superconductors.Comment: 4 pages, 6 figures, submitted to PR

    Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2

    Full text link
    The ternary iron arsenide BaFe2As2 becomes superconducting by hole doping, which was achieved by partial substitution of the barium site with potassium. We have discovered bulk superconductivity up to Tc = 38 K in (Ba1-xKx)Fe2As2 with x = 0.4. The parent compound BaFe2As2 as well as KFe2As2 both crystallize in the tetragonal ThCr2Si2-type structure, which consists of (FeAs)- iron arsenide layers separated by barium or potassium ions. BaFe2As2 is a poor metal and exhibits a SDW anomaly at 140 K. By substituting Ba2+ for K+ ions we have introduced holes in the (FeAs)- layers, which suppress the SDW anomaly and induce superconductivity. This scenario is very similar to the recently discovered arsenide-oxide superconductors. The Tc of 38 K in (Ba1-xKx)Fe2As2 is the highest observed critical temperature in hole doped iron arsenide superconductors so far. Therefore, we were able to expand this class of superconductors by oxygen-free compounds with the ThCr2Si2-type structure. Our results suggest, that superconductivity in these systems essentially evolves from the (FeAs)- layers and may occur in other related compounds.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging

    Get PDF
    Background Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. Results Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. Conclusion This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.Peer reviewe

    Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.

    Get PDF
    Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels

    Rare and low-frequency coding variants alter human adult height

    Get PDF
    Height is a highly heritable, classic polygenic trait with ~700 common associated variants identified so far through genome - wide association studies . Here , we report 83 height - associated coding variants with lower minor allele frequenc ies ( range of 0.1 - 4.8% ) and effects of up to 2 16 cm /allele ( e.g. in IHH , STC2 , AR and CRISPLD2 ) , >10 times the average effect of common variants . In functional follow - up studies, rare height - increasing alleles of STC2 (+1 - 2 cm/allele) compromise d proteolytic inhibition of PAPP - A and increased cleavage of IGFBP - 4 in vitro , resulting in higher bioavailability of insulin - like growth factors . The se 83 height - associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates ( e.g. ADAMTS3, IL11RA, NOX4 ) and pathways ( e.g . proteoglycan/ glycosaminoglycan synthesis ) involved in growth . Our results demonstrate that sufficiently large sample sizes can uncover rare and low - frequency variants of moderate to large effect associated with polygenic human phenotypes , and that these variants implicate relevant genes and pathways

    A meta-analysis of genome-wide association studies identifies multiple longevity genes

    Get PDF
    Publisher's version (útgefin grein).Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) ε4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE ε2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity.Alexander von Humboldt-StiftungPeer Reviewe

    A meta-analysis of genome-wide association studies identifies multiple longevity genes

    Get PDF
    Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) ε4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE ε2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity
    corecore