158 research outputs found

    Recent progress in the consistent interpretation of complementary spectroscopic results obtained on molecular systems

    Get PDF
    Abstract Research on organic thin films is largely driven by potential (opto‐)electronic applications and turns out to be no less intriguing from a fundamental point of view. Numerous studies make it clear that the understanding of device‐relevant molecular thin film architectures is quite challenging—often hampered by insufficient spectroscopic data and the lack of a consistent interpretation of the available datasets. Consequently, speculative aspects prevail in the discussion of energy levels in conjunction with the optical properties of organic thin films. Adequate spectroscopic techniques applicable to thin films of organic molecules (typical thicknesses required for devices are in the nanometer range) with the necessary sensitivities are rather demanding. Some of those methods were developed or significantly improved in the recent past. Here, the now available complementary spectroscopies are briefly surveyed with particular emphasis on some techniques that have not yet become widespread standards, and a non‐exhaustive set of examples of acquired experimental results are provided. For a consistent interpretation of the latter, the concepts brought forward in the literature considering the role of initial and final states of spectroscopic processes are outlined, with important consequences for quantitatively correct energy diagrams

    Identification of vibrational excitations and optical transitions of the organic electron donor tetraphenyldibenzoperiflanthene (DBP)

    Get PDF
    Tetraphenyldibenzoperiflanthene (DBP) attracts interest as an organic electron donor for photovoltaic applications. In order to assist in the analysis of vibrational and optical spectra measured during the formation of thin films of DBP, we have studied the vibrational modes and the electronic states of this molecule. Information on the vibrational modes of the electronic ground state has been obtained by IR absorption spectroscopy of DBP grains embedded in polyethylene and CsI pellets and by calculations using density functional theory (DFT). Electronic transitions have been measured by UV/vis absorption spectroscopy applied to DBP molecules isolated in rare-gas matrices. These measurements are compared with the results of ab initio and semi-empirical calculations. Particularly, the vibrational pattern observed in the S1 <- S0 transition is interpreted using a theoretical vibronic spectrum computed with an ab initio model. The results of the previous experiments and calculations are employed to analyze the data obtained by high-resolution electron energy loss spectroscopy (HREELS) applied to DBP molecules deposited on a Au(111) surface. They are also used to examine the measurements performed by differential reflectance spectroscopy (DRS) on DBP molecules deposited on a muscovite mica(0001) surface. It is concluded that the DBP molecules in the first monolayer do not show any obvious degree of chemisorption on mica(0001). Regarding the first monolayer of DBP on Au(111), the HREELS data are consistent with a face-on anchoring and the absence of strong electronic coupling

    Search for the standard model Higgs boson at LEP

    Get PDF

    Suicidal Behavior and Alcohol Abuse

    Get PDF
    Suicide is an escalating public health problem, and alcohol use has consistently been implicated in the precipitation of suicidal behavior. Alcohol abuse may lead to suicidality through disinhibition, impulsiveness and impaired judgment, but it may also be used as a means to ease the distress associated with committing an act of suicide. We reviewed evidence of the relationship between alcohol use and suicide through a search of MedLine and PsychInfo electronic databases. Multiple genetically-related intermediate phenotypes might influence the relationship between alcohol and suicide. Psychiatric disorders, including psychosis, mood disorders and anxiety disorders, as well as susceptibility to stress, might increase the risk of suicidal behavior, but may also have reciprocal influences with alcohol drinking patterns. Increased suicide risk may be heralded by social withdrawal, breakdown of social bonds, and social marginalization, which are common outcomes of untreated alcohol abuse and dependence. People with alcohol dependence or depression should be screened for other psychiatric symptoms and for suicidality. Programs for suicide prevention must take into account drinking habits and should reinforce healthy behavioral patterns

    The Evolution of Intermolecular Energy Bands of Occupied and Unoccupied Molecular States in Organic Thin Films

    No full text
    In organic semiconductors, the hole and electron transport occurs through the intermolecular overlaps of highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO), respectively. A measure of such intermolecular electronic coupling is the transfer integral, which can experimentally be observed as energy level splittings or the width of the respective energy bands. Quantum chemistry textbooks describe how an energy level splits into two levels in molecular dimers, into three levels in trimers and evolves into an energy band in infinite systems, a process that has never been observed for the LUMO or beyond dimers for the HOMO. In this work, our new technique, low-energy inverse photoelectron spectroscopy, was applied to observe the subtle change of the spectral line shape of a LUMO-derived feature while we used ultraviolet photoelectron spectroscopy to investigate the occupied states. We show at first that tin-phthalocyanine molecules grow layer-by-layer in quasi-one-dimensional stacks on graphite, and then discuss a characteristic and systematic broadening of the spectral line shapes of both HOMO and LUMO. The results are interpreted as energy-level splittings due to the intermolecular electronic couplings. On the basis of the Hückel approximation, we determined the transfer integrals for HOMO–1, HOMO, and LUMO to be ≀15 meV, (100 ± 10) meV, and (128 ± 10) meV, respectively

    Self-Assembly of Tetraphenyldibenzoperiflanthene (DBP) Films on Ag(111) in the Monolayer Regime

    No full text
    Tetraphenyldibenzoperiflanthene (DBP) is a promising candidate as a component of highly efficient organic photovoltaic cells and organic light-emitting diodes. The structural properties of thin films of this particular lander-type molecule on Ag(111) were investigated by complementary techniques. Highly ordered structures were obtained, and their mutual alignment was characterized by means of low-energy electron diffraction (LEED). Scanning tunneling microscopy (STM) images reveal two slightly different arrangements within the first monolayer (ML), both describable as specific herringbone patterns with two molecules per unit cell whose dibenzoperiflanthene framework is parallel to the surface. In contrast, single DBP molecules in the second ML were imaged with much higher intramolecular resolution, resembling the shape of the frontier orbitals in the gas phase as calculated by means of density functional theory (DFT). Further deposition leads to the growth of highly ordered bilayer islands on top of the first ML with identical unit cell dimensions and orientation but slightly inclined molecules. This suggests that the first ML acts as a template for the epitaxial growth of further layers. Simultaneously, a significant number of second-layer molecules mainly located at step edges or scattered over narrow terraces do not form highly ordered aggregates

    Complex Stoichiometry-Dependent Reordering of 3,4,9,10-Perylenetetracarboxylic Dianhydride on Ag(111) upon K Intercalation

    No full text
    Alkali metal atoms are frequently used for simple yet efficient n-type doping of organic semiconductors and as an ingredient of the recently discovered polycyclic aromatic hydrocarbon superconductors. However, the incorporation of dopants from the gas phase into molecular crystal structures needs to be controlled and well understood in order to optimize the electronic properties (charge carrier density and mobility) of the target material. Here, we report that potassium intercalation into the pristine 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) monolayer domains on a Ag(111) substrate induces distinct stoichiometry-dependent structural reordering processes, resulting in highly ordered and large K<sub><i>x</i></sub>PTCDA domains. The emerging structures are analyzed by low-temperature scanning tunneling microscopy, scanning tunneling hydrogen microscopy (ST­[H]­M), and low-energy electron diffraction as a function of the stoichiometry. The analysis of the measurements is corroborated by density functional theory calculations. These turn out to be essential for a correct interpretation of the experimental ST­[H]­M data. The epitaxy types for all intercalated stages are determined as point-on-line. The K atoms adsorb in the vicinity of the oxygen atoms of the PTCDA molecules, and their positions are determined with sub-Ångström precision. This is a crucial prerequisite for the prospective assessment of the electronic properties of such composite films, as they depend rather sensitively on the mutual alignment between donor atoms and acceptor molecules. Our results demonstrate that only the combination of experimental and theoretical approaches allows for an unambiguous explanation of the pronounced reordering of K<sub><i>x</i></sub>PTCDA/Ag­(111) upon changing the K content

    Growth and characterization of novel Ir1–xCrxO2 thin films

    Get PDF
    Novel Ir1–xCrxO2 thin films have been prepared by reactive co–sputtering deposition. Composition, structure and electric and magnetic behavior have been analyzed by different techniques including EDX, XRR, XRD, SQUID magnetometry, electrical resistivity and XANES and XMCD spectroscopies. Despite the difficulty in growing CrO2 by physical deposition techniques, an Ir1–xCrxO2 solid solution phase could be achieved for 0 = x = 0.8, where the oxidation state of Cr is found to remain as 4+. Both the electrical and the magnetic behavior are shown to starkly depart from those of the parent IrO2 (paramagnetic metal) and CrO2 (half–metal ferromagnet) compounds. In particular, they show a semiconducting behavior, d¿/dT &lt; 0 and giant magnetic coercivity at low temperatures. XMCD reveals a significant contribution of Ir to the magnetic response of the Ir1–xCrxO2 films. In addition, the nature of the magnetic moment of the Ir4+ ion (/ = 0.09) is completely different from the large orbital moment that is a hallmark of insulating Ir4+ oxides. This suggests a Cr–induced magnetic moment, which is a remarkably surprising result for an oxide
    • 

    corecore