60 research outputs found

    Ursodeoxycholate reduces ethinylestradiol glucuronidation in the rat: Role of prevention in estrogen-induced cholestasis

    Get PDF
    ABSTRACT Ethinylestradiol (EE) administration (5 mg/kg, s.c., daily for 5 days) to rats leads to cholestasis, and its derivative EE 17␤-glucuronide is a likely mediator of this effect. Coadministration of ursodeoxycholate (UDC) was shown to prevent ethinylestradiol-induced cholestasis. The aim of this study was to evaluate the inhibitory effect of UDC on EE glucuronidation in vivo and in vitro as a potential mechanism to explain UDC protection. UDC treatment (25 mg/kg, i.p., daily for 5 days) decreased the biliary excretion of EE 17␤-glucuronide in bile after administration of a trace dose of [ 3 H]EE and reduced microsomal EE 17␤-glucuronidation activity by 20% and expression of UGT2B1, one of the enzymes involved in EE conjugation, by 30%. Glucuronidation kinetic studies were performed in vitro using normal microsomes and isolated hepatocytes in the presence of tauroursodeoxycholate (TUDC), the major endogenous derivative of UDC in the rat. Kinetic enzymatic studies in microsomes showed a noncompetitive inhibition of EE 17␤-glucuronidation by TUDC, which was unique for this bile salt since other endogenous bile salts such as taurocholate, taurochenodeoxycholate, or taurodeoxycholate did not affect the enzyme activity. Studies in isolated hepatocytes confirmed the inhibitory effect of TUDC on EE glucuronidation and indicated that TUDC can reach the enzyme active site in intact cells. In conclusion, both in vivo and in vitro experiments indicate that UDC decreased the metabolic pathways involved in EE glucuronidation, hence decreasing the formation of the cholestatic derivative EE 17␤-glucuronide

    Adaptive downregulation of Cl- /HCO3 - exchange activity in rat hepatocytes under experimental obstructive cholestasis

    Get PDF
    In obstructive cholestasis, there is an integral adaptive response aimed to diminish the bile flow and minimize the injury of bile ducts caused by increased intraluminal pressure and harmful levels of bile salts and bilirrubin. Canalicular bicarbonate secretion, driven by the anion exchanger 2 (AE2), is an influential determinant of the canalicular bile salt-independent bile flow. In this work, we ascertained whether AE2 expression and/or activity is reduced in hepatocytes from rats with common bile duct ligation (BDL), as part of the adaptive response to cholestasis. After 4 days of BDL, we found that neither AE2 mRNA expression (measured by quantitative real-time PCR) nor total levels of AE2 protein (assessed by western blot) were modified in freshly isolated hepatocytes. However, BDL led to a decrease in the expression of AE2 protein in plasma membrane fraction as compared with SHAM control. Additionally, AE2 activity (J(OH)-, mmol/L/min), measured in primary cultured hepatocytes from BDL and SHAM rats, was decreased in the BDL group versus the control group (1.9 +/- 0.3 vs. 3.1 +/- 0.2, p<0.005). cAMP-stimulated AE2 activity, however, was not different between SHAM and BDL groups (3.7 +/- 0.3 vs. 3.5 +/- 0.3), suggesting that cAMP stimulated insertion into the canalicular membrane of AE2-containing intracellular vesicles, that had remained abnormally internalized after BDL. In conclusion, our results point to the existence of a novel adaptive mechanism in cholestasis aimed to reduce biliary pressure, in which AE2 internalization in hepatocytes might result in decreased canalicular HCO3- output and decreased bile flow.This work was supported by grants from Spanish Carlos III Health Institute (ISCIII) [J. M. Banales (FIS PI15/01132, PI18/01075 and Miguel Servet Program CON14/00129) cofinanced by "Fondo Europeo de Desarrollo Regional" (FEDER); "Instituto de Salud Carlos III" [CIBERehd: J. M. Banales], Spain; BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia BIO15/CA/016/BD to J. M. Banales), Department of Health of the Basque Country (J. M. Banales: 2017111010) and Euskadi RIS3 (J. M. Banales: 2016222001, 2017222014, 2018222029). "Fundacion Cientifica de la Asociacion Espanola Contra el Cancer" (AECC Scientific Foundation, to J. M. Banales). F. A. Crocenzi was recipient of a Young Investigator Scholarship from Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Argentina. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Dynamic localization of hepatocellular transporters in health and disease

    No full text
    Vesicle-based trafficking of hepatocellular transporters involves delivery of the newly-synthesized carriers from the rough endoplasmic reticulum to either the plasma membrane domain or to an endosomal, submembrane compartment, followed by exocytic targeting to the plasma membrane. Once delivered to the plasma membrane, the transporters usually undergo recycling between the plasma membrane and the endosomal compartment, which usually serves as a reservoir of pre-existing transporters available on demand. The balance between exocytic targeting and endocytic internalization from/to this recycling compartment is therefore a chief determinant of the overall capability of the liver epithelium to secrete bile and to detoxify endo and xenobiotics. Hence, it is a highly regulated process. Impaired regulation of this balance may lead to abnormal localization of these transporters, which results in bile secretory failure due to endocytic internalization of key transporters involved in bile formation. This occurs in several experimental models of hepatocellular cholestasis, and in most human cholestatic liver diseases. This review describes the molecular bases involved in the biology of the dynamic localization of hepatocellular transporters and its regulation, with a focus on the involvement of signaling pathways in this process. Their alterations in different experimental models of cholestasis and in human cholestatic liver disease are reviewed. In addition, the causes explaining the pathological condition (e.g. disorganization of actin or actin-transporter linkers) and the mediators involved (e.g. activation of cholestatic signaling transduction pathways) are also discussed. Finally, several experimental therapeutic approaches based upon the administration of compounds known to stimulate exocytic insertion of canalicular transporters (e.g. cAMP, tauroursodeoxycholate) are described

    Prevention of estradiol 17β-d-glucuronide–induced canalicular transporter internalization by hormonal modulation of cAMP in rat hepatocytes

    Get PDF
    Glucagon- and salbutamol-derived cAMP prevents estrogen-induced alteration of canalicular transporter localization and function via different pathways. Glucagon-derived protection depends on PKA activation, whereas salbutamol protection is exerted through a pathway that depends on Epac/MEK and microtubules
    corecore