118 research outputs found

    Meristic variability in whiptail lizards

    Get PDF
    24 p. : ill. ; 26 cm.Is it correct, as is often assumed, that the clonal form of inheritance in parthenogenetic lizards results in less variability than occurs with genetic recombination in their sexually reproducing (gonochoristic) relatives? We tested this hypothesis by comparing morphological variability in samples of parthenogenetic Aspidoscelis tesselata and several gonochoristic species of whiptail lizards. To control for environmental factors that might differentially affect embryonic development of morphological characters, we compared samples obtained from the same or geographically adjacent localities. In addition, we compared apparently "uniclonal" and multiclonal samples from each of two color-pattern classes (C and E) of A. tesselata. For univariate meristic characters, parthenogenetic A. tesselata matched the variability of a sympatric gonochoristic species in 11 of 20 comparisons, had lower variability in six comparisons, and was more variable in three. For multivariate characters derived from principal components analyses (PCA), the relative meristic variability of samples of A. tesselata could not be predicted by its reproductive mode, color-pattern class, apparent "uniclonal" or multiclonal state, or geographic location. In addition, we compared A. tesselata, A. sexlineata, A. marmorata, and A. gularis septemvittata in a single PCA, with the latter two species representing the two ancestral taxa from which A. tesselata was derived through hybridization. Once again, relative variability of A. tesselata was not always predictable based on its reproductive mode. It had greater variability than A. sexlineata, equivalent variability with A. gularis septemvittata, and less variability than A. marmorata

    Genetic analysis of the capsule polysaccharide (K antigen) and exopolysaccharide genes in pandemic Vibrio parahaemolyticus O3:K6

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pandemic <it>Vibrio parahaemolyticus </it>has undergone rapid changes in both K- and O-antigens, making detection of outbreaks more difficult. In order to understand these rapid changes, the genetic regions encoding these antigens must be examined. In <it>Vibrio cholerae </it>and <it>Vibrio vulnificus</it>, both O-antigen and capsular polysaccharides are encoded in a single region on the large chromosome; a similar arrangement in pandemic <it>V. parahaemolyticus </it>would help explain the rapid serotype changes. However, previous reports on "capsule" genes are controversial. Therefore, we set out to clarify and characterize these regions in pandemic <it>V. parahaemolyticus </it>O3:K6 by gene deletion using a chitin based transformation strategy.</p> <p>Results</p> <p>We generated different deletion mutants of putative polysaccharide genes and examined the mutants by immuno-blots with O and K specific antisera. Our results showed that O- and K-antigen genes are separated in <it>V. parahaemolyticus </it>O3:K6; the region encoding both O-antigen and capsule biosynthesis in other vibrios, i.e. genes between <it>gmhD </it>and <it>rjg</it>, determines the K6-antigen but not the O3-antigen in <it>V. parahaemolyticus</it>. The previously identified "capsule genes" on the smaller chromosome were related to exopolysaccharide synthesis, not K-antigen.</p> <p>Conclusion</p> <p>Understanding of the genetic basis of O- and K-antigens is critical to understanding the rapid changes in these polysaccharides seen in pandemic <it>V. parahaemolyticus. </it>This report confirms the genetic location of K-antigen synthesis in <it>V. parahaemolyticus </it>O3:K6 allowing us to focus future studies of the evolution of serotypes to this region.</p

    Callous-unemotional traits moderate the relation between prenatal testosterone (2D:4D) and externalising behaviours in children

    Get PDF
    Children who exhibit callous-unemotional (CU) traits are identified as developing particularly severe forms of externalising behaviours (EB). A number of risk factors have been identified in the development of CU traits, including biological, physiological, and genetic factors. However, prenatal testosterone (PT) remains un-investigated, yet could signal fetal programming of a combination of CU/EB. Using the 2D:4D digit ratio, the current study examined whether CU traits moderated the relationship between PT and EB. Hand scans were obtained from 79 children aged between 5 and 6 years old whose parents completed the parent report ICU (Inventory of Callous Unemotional Traits) and SDQ (Strengths and Difficulties Questionnaire). CU traits were found to moderate the relationship between PT and EB so that children who were exposed to increased PT and were higher in CU traits exhibited more EB. Findings emphasize the importance of recognising that vulnerability for EB that is accompanied by callousness may arise before birth

    Domestication history and geographical adaptation inferred from a SNP map of African rice

    Get PDF
    African rice (Oryza glaberrima Steud.) is a cereal crop species closely related to Asian rice (Oryza sativa L.) but was independently domesticated in West Africa-3,000 years ago. African rice is rarely grown outside sub-Saharan Africa but is of global interest because of its tolerance to abiotic stresses. Here we describe a map of 2.32 million SNPs of African rice from whole-genome resequencing of 93 landraces. Population genomic analysis shows a population bottleneck in this species that began-13,000-15,000 years ago with effective population size reaching its minimum value-3,500 years ago, suggesting a protracted period of population size reduction likely commencing with predomestication management and/or cultivation. Genome-wide association studies (GWAS) for six salt tolerance traits identify 11 significant loci, 4 of which are within-300 kb of genomic regions that possess signatures of positive selection, suggesting adaptive geographical divergence for salt tolerance in this species

    Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies

    Get PDF
    The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes

    Metabolic and Functional Genomic Studies Identify Deoxythymidylate Kinase as a Target in LKB1-Mutant Lung Cancer

    Get PDF
    The LKB1/STK11 tumor suppressor encodes a serine/threonine kinase which coordinates cell growth, polarity, motility, and metabolism. In non-small cell lung cancer, LKB1 is somatically inactivated in 25-30% of cases, often concurrently with activating KRAS mutation. Here, we employed an integrative approach to define novel therapeutic targets in KRAS-driven LKB1 mutant lung cancers. High-throughput RNAi screens in lung cancer cell lines from genetically engineered mouse models driven by activated KRAS with or without coincident Lkb1 deletion led to the identification of Dtymk, encoding deoxythymidylate kinase which catalyzes dTTP biosynthesis, as synthetically lethal with Lkb1 deficiency in mouse and human lung cancer lines. Global metabolite profiling demonstrated that Lkb1-null cells had striking decreases in multiple nucleotide metabolites as compared to the Lkb1-wt cells. Thus, LKB1 mutant lung cancers have deficits in nucleotide metabolism conferring hypersensitivity to DTYMK inhibition, suggesting that DTYMK is a potential therapeutic target in this aggressive subset of tumors

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore