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African rice (Oryza glaberrima Steud.) is a cereal crop species that shares a 

common ancestor with Asian rice (O. sativa L.) but was independently domesticated 

in West Africa ~3,000 years ago.1-3 African rice is rarely grown outside sub-Saharan 

Africa, and is of interest because of its tolerance to abiotic stresses.4,5 Here we 

describe a map of 2.32 million single nucleotide polymorphisms (SNPs) of African 

rice from whole genome re-sequencing of 93 landraces. Population genomic analysis 

reveals a population bottleneck in this species that began ~13-15 thousand years ago 

(kya), with effective population size reaching its minimum value ~3.5 kya, 

suggesting a protracted period of population size reduction likely commencing with 

pre-domestication management and/or cultivation. Genome-wide association studies 

(GWAS) with 6 salt tolerance traits also identify 11 significant loci, four of which 

overlap or are within ~300 kb of genomic regions that possess signatures of positive 

selection, suggesting adaptive geographic divergence for salt tolerance in this 

species.  

We used paired-end (2x100-bp) Illumina sequencing to re-sequence the genomes 

of 93 traditional O. glaberrima landraces from across its species range in West and 

Central sub-Saharan Africa (Fig. 1a and Supplementary Table 1). Most samples 

originated from a coastal region spanning Senegal to Liberia, as well as inland areas in 

Nigeria, Niger, Cameroon, Chad, Mali and Burkina Faso. Four landraces were sequenced 

deeply (~30x-73x mean nuclear genome coverage depth), and the remaining accessions 

were sequenced to an average depth of ~14.61x (missing genotype calls <4%; 

Supplementary Table 1). This yielded 381 Gb of mappable sequence when aligned to the 

O. glaberrima CG14 reference genome sequence.3



Following the application of quality control filters, we identified 2,317,937 SNPs 

or approximately 7.32 SNPs/kb, in African rice (Fig 1b,c; Supplementary Figs 1-3). We 

estimate nucleotide diversity (π) to be 0.0034 ± 0.0032 (± standard deviation) comparable 

to previous estimates using genome-wide data.3 We validated genotype calls by Sanger 

sequencing of 51 SNPs, and found >93% accuracy (Supplementary Table 2). We see 

905,654 SNPs (39% in genic regions), which include 51,296 synonymous, 54,833 

nonsynonymous, 110,390 intron, 19,860 upstream and 667,237 downstream SNPs. There 

are 1,105 nonsense mutations that truncate encoded proteins. Linkage disequilibrium 

(LD) is substantial, with r2 reaching half its maximum value at ~175 kb and approaching 

the baseline at ~300 kb (Fig 1d).  

Principal component analyses (PCA) of SNP variation using EIGENSTRAT 

revealed 10 significant components (P < 0.0001),7 the top three PCs each explaining <4% 

of the variance (Fig 2a and Supplementary Table 3). The top two eigenvectors are 

strongly correlated with geography, PC1 with an east/west (r = -0.77) and PC2 a 

north/south cline (r = -0.57)[Fig 2b]. An alternative view of populations stratification is 

offered by the population clustering program STRUCTURE, which infers an optimal 

number of genetic clusters that comprise O. glaberrima landrace genomes as K=6 (Fig 

2c; for other K values, Supplementary Fig 4).8 We find that all landraces predominantly 

belong to one cluster, with various levels of genomic contributions from 5 other ancestral 

populations. 

To examine spatial genetic variation, we chose 11o N latitude to divide the arid 

north from the tropical south, and 6o W longitude to separate the Western Atlantic coast 

from eastern inland areas (Fig 1a). These are consistent with clines observed in the PCA 



analyses, and define northwest (NW) and southwest (SW) coastal, as well as northeast 

(NE) and southeast (SE) inland populations. The NE inland quadrant encompasses a 

hypothesized inland center of origin in the middle Niger River of Mali suggested by 

Porteres.1,3,9,10 The NW/SW coastal division also separates two proposed centers of 

secondary diversification9,10 – a northern region centered on the Casamance in Senegal, 

and a southern area in the Guinean highlands between Sierra Leone and Liberia. For a 

review of proposed domestication and diversification centers, see Supplementary Note 1.  

We used TREEMIX to examine the topology of relationships and migration 

history among populations.11 Using the wild progenitor O. barthii A. Chev as an 

outgroup, we observe an older split between coastal and inland populations, and a more 

recent separation of northern and southern populations (Fig 3a).  Even without migration 

(m = 0), this topology accounts for >99% of the variance in SNP data.  Greater model 

support is provided by inferred gene flow from the SW coastal to the SE inland 

populations (m = 1)[Fig 3a], but this only marginally improves model fit.   

Domestication is typically accompanied by population bottlenecks,12,13 and to 

examine this we applied a multiple sequentially Markovian coalescent model on two 

haplotypes (PSMC').6 PSMC' profiles indicate reduction in effective population size (Ne) 

that began ~13-15 kya with an Ne ~60,000 and reaching a minimum Ne of ~3,000 at ~3.5 

kya (Fig 3b).  This severe bottleneck during the domestication of African rice14 is similar 

to what is observed in other annual crop species.12,13,15-17 In contrast, no severe bottleneck 

is evident in wild O. barthii (Fig 3b).  

For O. glaberrima, the recent maximum Ne observed at ~15 kya coincides with an 

increase in precipitation in West Africa after deglaciation leading into the start of the 



early Holocene African Humid Period (AHP).18,19 The presence of recognizably 

domesticated African rice, however, does not appear in the archaeological record until 

~2.8-2.4 kya, from sites in the inland Niger delta in Mali.20,21 Interestingly, our PSMC' 

results shows that the minimum plateau in Ne for African rice occurs near these earliest 

archaeological dates. The analysis thus indicates an early onset of the bottleneck, and 

may point to a protracted period of low-intensity cultivation and/or management before 

full domestication ~3.5 kya, just after a peak in human population growth in western 

Africa between 4-5 kya.19 Archaeobotanical evidence for this protracted utilization is 

elusive, since remains in West Africa prior to 5 kya are extremely rare.22 Early ceramic 

finds in the Early Holocene, however, do suggest early consumption of grass grains in the 

region.23 

Post-domestication spread of crop species is associated with adaptation to 

multiple environments, and one key trait likely associated with geographical adaptation in 

African rice is salinity tolerance.24,25 Arid regions of northern West Africa have higher 

salinity levels, associated with saltwater intrusion into rivers which can reach up to 250 

km inland.1 We interviewed African farmers in inland Togo and coastal Senegal (high 

salinity) about salt stress mitigation (Supplementary Table 4). In Senegal, despite efforts 

to control soil salinity, which affects most plant developmental stages, the major strategy 

was to farm salt tolerant varieties: ~25% of O. glaberrima varieties used by farmers in 

this area were reported as salt tolerant.  

To examine phenotypic variation in salt tolerance, we measured several salinity-

associated fitness traits in 121 landrace seedlings at early and late stages of salt exposure. 

These include visual plant salt stress symptoms using the standard evaluation system 



(SES) score,26 percent shoot injury, mortality, leaf Na+ and K+ content (Supplementary 

Table 5). There are significant differences in phenotypes among populations except for 

those measuring Na+ and K+ content (Fig 4a; Supplementary Fig 5; Supplementary Table 

6); for example, using Kruskal-Wallis tests in late salinity experiments for SES (P < 1.96 

x 10-7), percent injury (P < 8 x 10-6), mortality (P < 1.46 x 10-7) and fourth leaf [Na+] (P 

< 2.13 x 10-8).   

Pairwise population comparisons show that this difference is driven by reduced 

salt tolerance in the SW coastal population (Supplementary Table 7). Contrasting 

populations in late salinity tests, for example, reveals Bonferroni significant (P<0.0084) 

differences between the SW vs. its sister NW population, where the SW population was 

higher in SES score, percent injury, and mortality phenotypes. There are no significant 

differences between the NW coast, NE and SE inland populations for these traits 

(Supplementary Table 7). Loss of salinity tolerance of the SW coast population is 

possibly associated with costs of maintaining tolerance in a region of greater rainfall and 

reduced soil salinity (Supplementary Fig 6).1,27 

We conducted GWAS mapping with the 93 landraces whose genome we re-

sequenced,28 using a full SNP set of 1,056,028 SNPs after removing low-frequency SNPs 

(minor allele frequency < 5%), and a further reduced set of 199,093 SNPs obtained by 

pruning LD-correlated (r2 > 0.5) SNPs. We performed linear29 and mixed-model30 

associations, using the first 10 principal components of population structure as covariates. 

We accepted models across these analyses with a genomic inflation factor λ of 1 ± 0.15 in 

quantile-quantile plots and used a conservative Bonferroni threshold (P < 2.5 x 10-7 in 

reduced set) to identify significant SNPs (Fig 4b,c, Supplementary Fig 7). Twenty-eight 



SNPs that exceed the significance threshold were identified in 11 unique genomic regions 

(Supplementary Table 8). Seven loci were associated with percent shoot injury, two with 

SES scores, and two with both traits. Further work will be necessary to identify specific 

genes underlying these quantitative trait loci (QTLs), although there are plausible 

candidates genes in a few regions.  On chromosome 1, two homologs to the O. sativa 

high-affinity potassium transporters OsHAK5 and OsHAK6 are found ~75 kb and ~3.6 kb 

upstream, respectively, of the significant SNP in a shoot injury QTL. Overexpression of 

OsHAK5 has been shown to improve salt tolerance.31,32 We also identified a homolog of 

Salt Overly Sensitive 4 (SOS4)33 about 73 kb from a significant shoot injury GWAS SNP 

in chromosome 4. 

To identify genomic regions associated with adaptive differentiation between O. 

glaberrima populations, we used the cross-population composite likelihood ratio (XP-

CLR) method on the NW vs. SW coast populations.34 Using the upper 0.5% of CLR as a 

cut-off, we identified 98 selected genomic regions using either SW or NW coast 

populations as test populations, with 22 regions overlapping in the two tests (Fig 4d,e and 

Supplementary Table 9). These genomic regions range in size from ~10 to ~760 kb.  

We examined any overlap between QTLs identified by GWAS and putative 

selected regions identified by XP-CLR analyses. Two GWAS hits, on chromosomes 5 

(position 14.75 Mb) and 11 (position 19.23 Mb) are found within 300 kb of a selected 

region identified by XP-CLR. The most promising region however, encompasses two salt 

tolerance GWAS hits on the proximal end of chromosome 4 and overlaps with an 

inferred selected genomic region in the XP-CLR analysis (Fig 5a). Furthermore, we 

constructed a genome-wide empirical distribution of the fixation index (FST) between 



NW and SW coastal populations, and find that the genomic region around these two 

GWAS loci has a mean FST = 0.157. Several SNPs are in the upper 0.5% of the 

distribution (mean genome-wide FST = 0.027) [Fig 5a; Supplementary Fig 8; 

Supplementary Table 10], providing additional support for adaptive differentiation in this 

genomic region.35 We find 41 genes in this area of overlap (Fig. 5b); one possible 

positional candidate gene encodes a peptidyl-prolyl cis/trans-isomerase (PPIase), a 

member of a gene family involved in stress response,36 some of which confer seedling 

salt tolerance in Asian rice.37  

In summary, our analysis of African rice provides genetic evidence for an 

extended period of low-intensity cultivation or management of a wild species prior to its 

domestication. There have been two competing hypotheses for the timescale of 

domesticated crop origins - the rapid vs. protracted transition models of domestication; 

our work provides support for the latter.38-40  Our study also identifies genomic regions 

associated with geographic differentiation and adaptation to a major abiotic stress factor – 

salinity – in the West African landscape, documenting crop evolutionary diversification 

accompanying species range expansion. The genome-wide polymorphism map in O. 

glaberrima presents key information on the evolutionary history of this recently evolved 

domesticate, and offers new tools for mapping agriculturally important genes.  
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FIGURE LEGENDS 

Figure 1. A SNP map for African rice. (a) Location of sampled landraces in West 

Africa, with the latitude (11o N) and longitude (6o W) demarcating the 4 geographic 

quadrants delimited in this study indicated by dashed lines. (b) CIRCOS plot showing 

SNP diversity across the 12 chromosomes of O. glaberrima. The chromosomes are 

numbered.  The outer circle indicates SNP density, the middle blue circle is nucleotide 

diversity (π) and the inner green circle depicts the population mutation parameter (θW). 

(c) Close-up of variation across chromosome 1, with blue indicating π (per bp) and red

SNP number in each 25-kb window. Position along chromosome is in Mb. (d) 

Relationship of mean linkage disequilibrium with distance. 

Figure 2. Population structuring in African rice. (a) Principal components (PCs) of 

SNP variation.  Samples from the NW coast (red), SW coast (green), NE inland (orange) 

and SE inland (blue) populations are shown.  The plots are for the first 3 principal 

components.  (b) PC1 and PC2 scores for each O. glaberrima accession are shown, with 

geographic location of the samples plotted in the map.  Visually, the east/west cline for 

PC1 and the north/south cline for PC2 are evident. (c) STRUCTURE plot for African 

rice, showing distribution of the K=6 genetic clusters.  The 4 different West African 

populations are indicated. (d) Neighbor-joining clustering of landraces based on genetic 



distance.  Colors of the branches indicate membership in one of the 4 geographic 

populations.  

Figure 3. Demography of O. glaberrima and O. barthii. (a) Treemix analysis of 93 O. 

glaberrima samples divided into 4 West African geographic quadrants, with O. barthii 

samples serving as the outgroup population. Arrow represents the direction of migration. 

(b) PSMC'-inferred demographic history of O. glaberrima and O. barthii. Each line

represents past effective population sizes for a pseudodiploid genome generated by 

combining haploid sequences of O. glaberrima or O. barthii. Blue line represents 

coastal/inland O. glaberrima pseudodiploid combination, and red line represent 

intraspecific O. barthii combinations. 

Figure 4. Population phenotypic differentiation, GWAS mapping and selective 

sweep analysis for salinity tolerance. (a) Geographic variation in salt tolerance 

phenotypes. Bar plots represent the 4 West African populations display highest and 

lowest quartiles around the median (box) and 1.5 times this interquartile range (whisker). 

The line in the box is the mean, while the dots outside the whiskers are outlier values. 

Specific traits are described in Supplementary Table 5. SES4 is standard evaluation 

system score, INJ5 is percent shoot injury, and MORT2 is mortality count in late salinity 

tests. Na+ and K+ concentrations in the 4th leaf are also shown.  In all but one trait (K+ in 

4th leaf), the SW coast population shows a significant difference compared to other 

populations. (b) GWAS Manhattan plots for percent leaf injury in late salinity test using 

unpruned SNP set with linear model, and (d) SES score in late salinity test using LD-



pruned SNP set with linear model. Red line indicates Bonferroni significance threshold. 

Chromosome numbers are indicated below.  (d) Genome-wide distribution of XP-CLR 

values using NW coastal as reference and SW costal as object population, and (e) SW 

coastal as reference and NW coastal as object population. Red line indicates the 99.5% 

percentile XP-CLR value. 

Figure 5. Comparison of GWAS and selected genomic regions at proximal end of 

chromosome 4. (a) The top Manhattan plot shows the GWAS results between position 1 

to 1.5 Mb on chromosome 4.  The GWAS is for percent leaf injury in late salinity test 

using unpruned SNP set with linear model. The red line indicates the Bonferroni 

significance threshold. The middle plot shows the XP-CLR results using SW coastal 

population as the reference and NW coastal population as the object population. 99.5% 

percentile XP-CLR value is shown in red line.  The bottom plot is a sliding window 

analysis of FST values across the genomic region. The red line is the 99.5% percentile for 

genome-wide FST values. The blue line indicates the mean FST across the genome.   The 

shaded region delimits a common ~500-kb genomic region with elevated GWAS 

probabilities, XP-CLR likelihoods and FST values in this genomic region.  (b) Position of 

41 gene models in this region are indicated below, where red represents minus strand and 

blue represents positive strand genes. 

ONLINE METHODS 

Sample collection and library preparation. Seeds were obtained from the International 

Rice Research Institute (IRRI) and from the United States Department of Agriculture 



(USDA) [see Supplementary Table 1 for accessions]. DNA was extracted from a single 

seedling leaf using either the DNeasy mini kit (Qiagen, Venlo, Netherlands) or using 

standard phenol-chloroform-isoamyl alcohol buffer. Libraries were prepared using 

Illumina TruSeq (San Diego, CA) kits with an average 380 bp insert size. 2 x 100 paired-

end sequencing was done for the O. glaberrima samples on an Illumina HiSeq 2500 

sequencer at the New York University Center for Genomics and Systems Biology 

Genome Core with 2-7 libraries per lane.  2 x 100 paired-end sequencing was also 

completed for three O.barthii samples on an Illumina HiSeq 2000 sequencer at the 

University of Minnesota Genomics Center (UMGC). For these, barcoded TruSeq DNA 

Nano libraries were prepared with a 350-bp insert, and the pooled libraries sequenced 

using 1/2 lane. 

Read alignment and SNP calling. Sequencing reads passing Illumina’s quality control 

filter were aligned using Burroughs-Wheeler Aligner (v0.6.1) to map reads to the Arizona 

Genome Institute Oryza glaberrima genome version 1.13 that included both the 12 

pseudomolecules and 1,939 unassembled scaffolds (Genebuild version 2011-05-AGI).   

Duplicate reads were marked and removed from individual sample alignments using 

Picard-tools (v1.111) MarkDuplicates and then merged using MergeSamFiles. Global 

realignments of reads around indels was done using the Genome Analysis Toolkit 

(GATK v3.1-1)41,42 RealignerTargetCreator/IndelRealigner protocol. 

Before processing the final SNP map of 93 O. glaberrima samples, we had 

mapped 99 samples, assumed to be O. glaberrima based on the accession labels from 

IRRI or USDA, to the O. sativa Nipponbare reference genome (IRGSP 1.0), along with 



57 diverse O. sativa accessions (I.S. Pires, J.M. Flowers and M.D. Purugganan, 

unpublished data). SNP calling and filtering (using the methods described below) 

produced a set of over 6 million SNPs that were used in STRUCTURE population 

clustering analyses (see below) to look for mislabeled or admixed samples. Six samples 

were found to not be true O. glaberrima: IRGC 103587, 103602, 103961, 104037, 

104254, and 106291. These were removed from the study.  

SNP calling was performed using the GATK Unified Genotyper set for diploids 

using default filtering settings, similar to previous studies.43,44. Base qualities were 

capped at the mapping quality of the read, and all reads mapping to two or more places 

were automatically filtered out. Filtering for all SNPs was done in GATK using settings 

based on outlier transition/transversion ratio that are enriched false positives. For the SNP 

set of 93 O. glaberrima samples, filtering was applied with the following settings: 

DP>10000, FS > 212, MQ < 11, MQ0 > 5000, MQRankSum < -46, QD < 0.16, and 

ReadPosRankSum < -15. This filtering strategy reduced the raw unfiltered set of 2.88 

million SNPs to the working set of 2.3 million (with scaffolds) and 2.14 million SNPs 

(pseudomolecules only) analyzed in this study. 

 The three O. barthii accessions sequenced as part of this project (IRGC 101226, 

100941, and 104081) and 7 publicly available DNA libraries from the SRA archives 

(SRR1206365, SRR1206367, SRR1206368, SRR1206397, SRR1206405, SRR1206412, 

and SRR1206436) were mapped to the O. glaberrima genome. SNPs were called for this 

set of samples alone and were filtered before merging with the 93 O. glaberrima set. 

Settings used to filter the O. barthii set were DP > 1500, FS > 74, MQ < 37, MQ0 > 

5000, MQRankSum < -5.50, QD < 0.4, and ReadPosRankSum < -4. This set of O. barthii 



and O. glaberrima SNPs, as well as individual sample BAMs, were used in downstream 

population analyses that included both species. 

To validate SNPs, we tested 51 SNPs and 131 genotypes by Sanger sequencing. 

Each of regions were amplified in at least one out of 19 haphazardly chosen O. 

glaberrima DNA templates and both forward and reverse strands were Sanger sequenced 

in multiple DNA templates (Supplementary Table 2). Contigs were assembled in 

Sequencher (Gene Codes, Ann Arbor, MI) and trimmed of primer sequence. The 

corresponding coordinates of the trimmed sequences were used to query SNP predictions, 

and these sites were examined for inconsistency, such as signals of heterozygosity or 

nonequivalent base calls in Sanger sequence chromatograms.  We find 9/131 genotypes 

were different between the two methods, giving a concordance rate of 93.1%. Eight out 

of 9 errors were false heterozygous calls in the VCF that appeared to be homozygous 

reference or alternative alleles in the Sanger data. One error was found to be a genotype 

that was neither of the biallelic variants in the VCF. Of the concordant assigned 

genotypes screened, 30 were homozygous alternative SNP, 7 were heterozygous, and 85 

were homozygous reference allele. 

SNP annotation. SNPeff (v3.6c)45 was used to assign SNP effects based on gene models 

from the AGI v0.1.1 2012 annotation (still current as of February 2016).  Codons with 

multiple SNPs in the same codon were annotated separately, and only canonical 

transcripts were used. SNP effect classifications were dependent on the contemporary 

gene models available; however, given the discrepancies between O. glaberrima and O. 



sativa annotation quality, it is clear that improvement in annotated gene models will 

change the counts of effects in the SNP set. 

 Population genetic parameters. The program ANGSD (v0.613)46 was used to calculate 

population genetic statistics θW, π, and Tajima’s D directly from sample BAMs in 25-kb 

non-overlapping intervals; this was done for the whole sample set and for populations 

assigned by geographic quadrant. 

The same set of SNPs from the TREEMIX analysis (see below) was used to 

estimate genome-wide linkage disequilibrium (LD). LD was calculated in PLINK 

(v1.90)29 using SNP pairs that were within a 1,000-kb window and at a maximum 

distance of 99,999 SNPs apart. Genome-wide LD decay was calculated by grouping SNP 

pairs into 1-kb bins and averaging the squared correlation coefficient (r2) within each bin. 

The average r2 per bin were plotted for each chromosome and a line of best fit was 

plotted using LOESS curve fitting.  

Population structure analysis and genetic distance relationships. STRUCTURE 

(version 2.3.4)8 was run using a reduced SNP set in which SNPs called in scaffolds and 

not pseudomolecules were removed, 4% of the total SNPs were chosen at random and 

retained, and then these were LD pruned in PLINK (v1.90)29 using settings ‘-indep 50 5 

1.5’, which left of 29,983 SNPs. Using settings for admixture and no linkage, 

STRUCTURE was run with a burnin of 50,000 replicates and 50,000 MCMC iterations 

following the burnin step. This was repeated 10 times for each K value (from 1 to 8). 

Results were analyzed using the EVANNO method with STRUCTURE HARVESTER47 



and CLUMPP (v. 1.1.2)48 was used to permute run clusters. DISTRUCT49 was used to 

plot the results of K=3 through K=6 (Supplementary Fig 4). The delta(K) indicates K=6 

to be optimal. 

Principal component analysis (PCA) was done using the EIGENSOFT package to 

run EIGENSTRAT7 on the complete pseudomolecule SNP set that had been LD pruned 

to 570,728 SNPs. The top ten principal components were used in geographic analysis as 

well as in downstream genome-wide association mapping. 

 A neighbor-joining tree was constructed using the filtered SNP set of 93 O. 

glaberrima accessions; with distances calculated using the Gronau method50, described in 

Hazzouri et al., (2015)44.  The tree was constructed from the distance matrix using Mega 

(v5.2)51. 

 TreeMix v.1.1211 was used to model the admixture among the 93 O. glaberrima 

samples divided by geographic quadrants (see Fig 1). Initially, SNPs segregating across 

the 12 chromosomes were filtered using PLINK (v1.90) to include sites with greater then 

90% genotyping rate and exclude sites with minor allele frequency less then 5%. One 

hundred SNPs were analyzed as blocks to account for possible effects of LD. Admixture 

trees were built using the 10 O. barthii as the outgroup sample while allowing 0 – 10 

migration events.  Model fit of each migration event was examined by estimating the 

proportion of variance in relatedness between populations explained by each migration 

model. 

PSMC' analysis. Evolutionary demographic changes in O. glaberrima and O. barthii 

were inferred using the multiple sequentially Markovian coalescent model on two 



haplotypes (PSMC').6 Samples with at least 20X genome coverage was used for the 

analysis: IRRI_103989, IRRI_103992, IRRI_104011, IRRI_104180, and IRRI_105011 

for O. glaberrima; ba_100941, ba_101226, and ba_104081 for O. barthii.  Genotype 

calls for each genomic position were made using Samtools (v1.2)52 mpileup command, 

filtering for reads with a minimum base quality score of 30 and mapping quality score of 

30. The soft masked O. glaberrima genome version 1.1 was used to identify repetitive

regions and mask genotype calls overlapping these repetitive regions. Due to inbreeding 

for O. glaberrima and O. barthii we considered each sample as a single genomic 

haplotype following Thomas et al. 2015.53 Occasional heterozygous sites were dealt with 

by randomly sampling one allele. Each single haplotype were then combined with other 

samples to create pseudodiploid genomes for the PSMC' analyses. 

Out of the 5 O. glaberrima samples, 4 (IRRI_103989, IRRI_103992, 

IRRI_104180, and IRRI_105011) were from the west coastal region. Pseudodiploids 

generated from within populations generated spurious PSMC' profiles and were excluded 

from analysis. Thus all PSMC’ results are from pseudodiploids generated from one 

coastal and one inland haplotype. For the 3 O. barthii, a pseudodiploid genome generated 

from sample ba_100941 and ba_104081 resulted in PSMC' profiles that were similar to 

the O. glaberrima combinations. This suggested ba_100941 and ba_104081 were a more 

O. glaberrima-like O. barthii sample, possibly from introgression; thus results are shown

for pseudodiploids generated between the more O. barthii-like ba_101226 sample and 

ba_100941 or ba_104081. Default parameters of the PSMC' program were used for the 

analysis. Mutation scaled time and effective population size estimated by MSMC were 



converted by assuming a mutation rate of 6.5×10-9 substitutions per site per year54 and a 

generation time of one generation per year. 

Salt tolerance phenotyping of the seedling stage. Phenotyping for O. glaberrima was 

done at the International Rice Research Institute (IRRI) in a phytotron at 25o-29oC 

controlled temperature range.  Seeds for 121 O. glaberrima landraces were pre-

germinated for 4 days and then transferred to trays suspended in hydroponic nutrient 

solution containing 1 g/L of Jack’s Professional fertilizer 20-20-20 (Jack R. Peters, Inc), 

where they acclimated for five days before the onset of Test A (also referred to as the 

early test), and twelve days before the onset of Test B (late test); these tests evaluate salt 

tolerance within the window of the salt-sensitive seedling stage55,56. We chose these 

different start times because there is variation in when people transplant African rice 

from elevated beds, that are watered by rain or well water, to the field where exposure to 

salinity may occur. Tray placements in the Phytotron were randomized, and locations 

were haphazardly reset every 5 days. 

Two people separately evaluated plants using the standard evaluation score (SES: 

a visual score of 1-9, where 1 is completely healthy and 9 is exhibiting full salt sensitive 

characteristics)26 and estimated percent plant injury, at multiple intervals during the tests. 

Mortality was measured twice during Test A. Leaf and shoot sodium and potassium 

levels were measured once for each test. The intervals of when the phenotype 

measurements were made are in Supplementary Table 5.  

In Test A, the early salinity test beginning 9 days after seeds were first imbibed, 

seedlings are exposed to an electric conductivity (EC) of 12 dSm-1 for 12 days, then to 18 



dSm-1 for 6 days. In Test B, the late salinity test, exposure to EC12 dSm-1 salt levels was 

at 16 days after germination, and the increased to EC18 dSm-1 seven days later. Twenty 

replicate plants of each landrace were grown as controls, two test replicates of 20 

replicate plants each were used in Test A, and one test replicate of 20 replicate plants was 

used in Test B. Control hydroponic trays were kept at <1 dSm-1.  For each hydroponic 

tray, two salt tolerant (Pokkali IRGC 15368 and FL478), one salt sensitive (IR29) and 

one moderately salt sensitive (IR64) O. sativa checks were grown to confirm the 

hydroponic solution was acting as expected. Solution pH was balanced to 5.0 every other 

day and nutrient solution was refreshed every 5 days. 

Cation content is correlated with salt tolerance in rice57. In the standard SES test 

(Test A), the 4th leaf generally best correlates to salt tolerance (Gregorio pers. comm.). 

The 4th leaf was collected from three plants expressing the typical phenotype per test 

replicate.  Test B plants were measured differently; the whole shoots of three typical 

plants per landraces were collected. Material fresh and dry weight was obtained, dried 

material was powdered and ions were extracted in acetic acid (0.1 N) overnight at 80 °C. 

Na+ and K+ in the extracts were determined using a flame spectrometer (Model 420; 

Sherwood Scientific, Cambridge, UK). 

The R58 package Pgirmess59 (v1.64) was used to perform the Kruskal-Wallis test 

with multiple comparisons; we used this test since not all phenotypes had a normal 

distribution. P values were Bonferroni-corrected. Geographic quadrants tested had the 

following sample sizes: SE inland (n=13), SW coast (n=50), NE inland (n=9), and NW 

coast (n=49). 



Selection analyses. Cross population composite likelihood ratio (XP-CLR) test26 was 

used to compare the NW and SW costal O. glaberrima population allele frequency 

distribution to detect selective sweeps. XP-CLR program (v1.0) was used with the 

following parameter: “-w1 0.005 100 100 –p0 CHR# 0.8”. XP-CLR scores were 

estimated across nonoverlapping 100-bp windows that was then used to estimate a 

maximum XP-CLR score across 10-kb segments. 10-kb segments within the top 0.5% 

maximum XP-CLR values were considered significant. XP-CLR requires a genetic map 

during its modeling of the allele frequency distribution. Currently, however, there is no 

genome-wide estimate of a O. glaberrima recombination map thus the O. sativa average 

recombination rate of 4.13×10-6 cM/bp was used.60 We note that simulations have shown 

the XP-CLR method is robust to misestimates of recombination rate.26 

We also did a genome-wide outlier test for population differentiation based on the 

Lewontin-Krakauer test.35 FST between NW vs. SW coast populations was calculated 

using VCFtools (v0.1.12b)61 implementing the Weir and Cockerham method (1984).62  

The top 0.5% of 25-kb windows across the genome were examined and singleton 

elevated windows, without any increase in FST in neighboring windows, were not 

considered. Peak start and end points were determined for each outlier region based on 

deviation from the mean FST at that position. 

Genome-wide association mapping. Linear and full mixed-model associations were 

performed for 18 traits in either early and late tests, and scored at various time intervals 

(see Supplementary Table 5). We used both full pseudomolecule SNP (2,138,928 SNPs) 

and LD pruned datasets (570,528 SNPs) that were further filtered to retain SNPs with 



>90% called genotypes and a minor allele frequency >5%, resulting in 1,056,028 and

199,093 SNPs in the full and LD pruned test sets, respectively. Linear associations were 

conducted in PLINK (v1.07) and Bonferroni significance values of SNPs were calculated 

using the —adjust function. Mixed-model associations were conducted in EMMAX30

with a Balding-Nichols kinship matrix and Bonferroni P value correction was performed 

in R. The top ten EIGENSTRAT PCs were used as covariates in all four kinds of tests. 

Manhattan and quantile-quantile (Q-Q) plots were made in R using the package 

qqman.63 Median lambda values were obtained from PLINK logs or for mixed-model 

associations, were calculated in R by dividing the median chi-square test statistic by the 

expected distribution given one degree of freedom. Where two or more significant SNPs 

were near each other, one of the two or the central significant SNP, was used as the 

window center. Syntenic regions between O. glaberrima and O. sativa subsp. japonica 

were determined using the Ensembl64 synteny tool based on orthology calculated from 

collinear gene blocks, gene annotations were scanned for known salt tolerance genes and 

genes involved in cation transport and stress response. Candidate genes were reciprocally 

used in a BLAST query of the O. glaberrima genome to obtain the coordinates and 

percent similarity of the orthologous gene. 

Determination of salinity in West Africa. Raster maps of soil conductivity65 were 

sourced from the USGS Earth Resources Observation and Science (EROS) database (July 

2015) and a raster map of African cropland data66 was sourced from the International 

Institute for Applied Systems Analysis. These were intersected using ESRI ArcGIS v. 

10.1. Areas between 1-33% land use for cultivation were coded as 1 for low cultivation. 



Areas between 34-66% were coded as 2 for moderate. Areas between 67-100% were 

coded as 3 for high cultivation. The current soil electric conductivity (EC) layer was used 

to indicate areas where increased salinity in groundwater as a result of overdrawn 

irrigation systems would cause oversaturation of salt in the soil. Areas assigned “low”, 

“moderate”, “severe”, and “very severe” EC were coded 1-4.  

Farmer interviews in West Africa. In Summer 2015, Meyer, Plessis, and Sanches 

visited O. glaberrima farmers in Togo and Senegal together with AfricaRice staff that 

assisted in translation between French and the local languages Tem and Éwé in Togo and 

Serer, Wolof, and Pular in Senegal. Work in Togo was overseen by Ndjiondjop, who 

selected the field sites in the Plateaux region of Togo, determined to be suitably 

representative of the rice agricultural zone through interviews with faculty at University 

Abomey Calavi Benin and other staff at AfricaRice Cotonou. Work in Senegal was 

overseen by Bimpong and spanned both the northern arid regions around St. Louis and 

the Sine Saloum region until the Gambia border. 

Village chief verbal permission was obtained before interviews began. Seven 

interviews were done involving groups of 2 to 7 people at a time, each lasting ~1 hr. Each 

group was asked a core set of questions and free questions to obtain more relevant detail. 

Answers were recorded per informant.  Notes were taken and cross-checked by two 

people with an audio recording of the interview. Interviews were analyzed and answers 

were presented in tables (Supplementary Data 1). In Senegal, some informants donated 

seeds of varieties to AfricaRice. Institutional Review Board determination of Exempt 



status was granted through the New York University University Committee on Activities 

Involving Human Subjects (UCAIHS) prior to conducting interviews (IRB# 12-8968). 
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SUPPLEMENTARY NOTE.  Domestication theories for African rice. 

The most commonly described theory of African rice domestication is the one proposed 
by French botanist Roland Portères1,2, a specialist on grain crops. Portères contributed to the 
meetings on African crop domestication organized by Jack Harlan, which became collected in the 
book ‘Origins of African Plant Domestication’3, and illustrate the difficulty in confirming origins 
and timing of African rice domestication processes.  This note summarizes the spatial and 
temporal ideas of African rice domestication based on multiple lines of scholars (botanical, 
archaeological, glottochronological, and cultural), that provide alternative views we have 
considered, that are especially important given the paucity of archaeological data in tropical and 
sub-tropical West Africa.  

Pertinent to the timing of domestication is the severity of protraction: protraction is 
broad-range incipient domestication events rather than events in single specific origins at a 
specific time point. The archaeological findings at Jenne-Jeno that could only trace domesticated 
African rice to 1000 BCE4,5 contributed to Portères rejecting the protracted model and searching 
for defined Centers of Origin in Africa. He proposed that African rice diffused out from a single 
origin in the inner Niger River Delta (IND), and that the Mande people (Mandingo) brought it 
West to Senegambia. He further proposed that rival steppe nomads pushed them, the grain 
producers, into the forest, which led to Senegambia and the Guinean forest region being called 
more recent ‘secondary centers’. 

The assertion by Portères1,2 that food production in the forest was a recent innovation by 
grain producers was subsequently overturned6, has been rejected by some scholars, stating that as 
a grain specialist, Portères overlooked forest product importance7. Some scholarship asserted 
that along the widespread Savannah, Sudanic, and Guinean zones, ancient people were able to 
live through exploitation of the environment without needing to deliberately produce food 
themselves8. Sub-Saharan Neolithic pastoralism as early as 7 kya was possible; there is some 
evidence of hunter-gatherer settlements in Senegal 7 kya9.  Regardless, some scholars continued 
to search for a nuclear Mande center in the Sudano-Guinean forest that would suggest an acute 
center of origin for rice and other crops there, but not enough evidence materialized10. The nature 
of hunter-gatherer and pastoralism in West Africa led Thurnstan Shaw to report that the whole 
principle of sub-Saharan Centers of Origin is called into question7, turning attention to a theory 
of a non-centric protracted origin of African rice.  



Climate change causing desiccation also was used in development of another theory that 
people would have domesticated African rice on the widespread fringe of the tropical West 
African forest belt where habitat was transforming into savannah 4000 years ago as they could 
no longer rely on traditional foodsources11. Clark proposed that desiccation and increased 
population would force change. Coursey proposed separate practices of rice and tuber harvesting 
divided by ethnic boundary, with rice grown in the westerly Ivory Coast regions, and that 
proposed that people would increase reliance on rice and relax their reliance on forest tubers 
under climate change12. Whether this reliance was intensified wild harvesting or production is 
unknown. Grain grinding stones widespread early on but could only be associated with cultivated 
cereals at end of second millennium BC13. Oryza barthii, the progenitor of African rice, occurred 
throughout and was proposed as one of the food sources of the Sahel communities in now 
Senegal that did not turn to cultivation until 3 kya13.  

Despite the lack of consensus on how people in the Savannah adapted or how rice spread 
to new environments14, Harlan remained firm that experimentation in uplands and floodplains 
was also a domestication process, and that multiple non-centric domestication centers should be 
considered. Some support is offered from other lines of evidence that do suggest longstanding 
African rice cultivation outside of the Inner Niger delta.  Olga Linares used social practices and 
history to argue the Casamance region of Senegal had African rice by the beginning of the first 
millennium AD15.  Using glottochronology, Edda Fields-Black demonstrated that in western 
coastal regions, both lowland coastal rice (rainfed and stream-irrigated) and rainfed upland rice 
was developed for over 1000 years9. This long timespans for rice agriculture along the coast 
support Harlan’s multiple domestication ideas. Regardless, there is evidence that inland and 
coastal rice technology was not unidirectional, as proposed by Portères1, but exchanged as ethnic 
groups interacted. Dry habitat grain cultivation words from Mande became ‘loanwords’ in 
Atlantic languages, and coastal habitat grain cultivation words from Atlantic languages were 
borrowed by the Mande9. 

While this study does not specifically address the geographic origin of domestication, the 
distinctness of forest, north Atlantic, and inland northern rice populations (main text Fig. 2), the 
early divide we observed of coastal and inland populations with possible migration happening 
laterally within the forest belt (main text Fig 3), and the protracted reduction in effective 
population size peaking at a time of high human population (main text Fig. 3) is compatible with 
both centric and non-centric protracted origin(s) of African rice. 
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SUPPLEMENTARY TABLE 4a. Number of farms visited where salt tolerance was 
discussed during interviews. Some farms had multiple people involved in the interview. In 
Senegal 14/33 people expressed they practiced transplanting (which could protect young 
seedlings from some stresses). 

SUPPLEMENTARY TABLE 4b. Names of varieties farmers could name when asked what 
kinds of African rice they were growing within the last 3 years. Farmers were then asked 
which of these are tolerant to salt. In Senegal, 27% of the varieties were said to be salt tolerant.  

Country Local variety names Local salt tolerant varieties 

Togo Café, Há, Moligba, Oletretowê, 
Pakbalipe, Tretomoli, Trevemoli, 
Winto, Winto hi, Winto ibo, 
Wintoshi, Wintoyibo,Yibo 

n/a 

Country
/Regions 

Total 
number of 
farms/total 
farmers 

Farms 
affected 
by salt 
stress 

Farms 
unaffected 
by salt 
stress 

Farms 
with 
ambiguity 

Farmer response 
to salt stress 

Farmers 
practicing at 
least one of the 
responses to salt 
stress 

Togo/ 
Plateau 

7 0 5 2 n/a n/a 

Senegal/
Saint 
Louis 
and Sine 
Saloum 

33/33 32 1 0 Improving 
drainage, growing 
salt tolerant 
varieties, building 
small dykes, large 
dykes, planting 
trees, moving to 
places with less 
salt, transplanting 

19 



Senegal Abibaba, Ahobale, Ahouyet, 
Bakonda, Banyuno, De semsen, Diep 
buseyo, Dimba gnyima, Djiep gao, 
Donathe, Dootir, Lagrat, Luku, Maria 
masa, Mbora Tell black, Mbora Tell 
white, Metoro, Momo, Momocoy, 
Mon, Ndoukouti, Okunda, 
Ombendah, Omomobalé, 
Omomokane, Ortora, Padit, 
Pepermeñe, Pudar, Sam saham, 
Thiloo, Toubab, Tout yif, Ubale, 
Ubalule, Undap, Ya binta, Ya cisse, 
Yaka, Yehoumahk,Simtam/Sintam 

Momo, Ndoukouti, Ombendah, Ortora, 
Pepermeñe, Sintam, Ubalule, Yahoumahk, 
Yaka, Mbora Tell black, Mbora Tell white, 

SUPPLEMENTARY TABLE 4c. Informants in Senegal (n=33) report how many other 
abiotic factors (drought, flood, heat, high nutrients) affect how the plant responds to salt 
stress, based on their life experience. They report if the factors exacerbate or relieve the salt 
stress response.  

Drought worsens salt 
stress 

Iron worsens salt 
stress 

Heat worsens salt 
stress 

Fertilizer/nutrients 
relieves salt stress 

11 1 2 2 

SUPPLEMENTARY TABLE 4d. Informants were asked at what growth stages African 
rice is most susceptible to salinity. 

seedling stage heading flowering 

7 4 16 



SUPPLEMENTARY TABLE 11. Primers used in qRT-PCR 

qRT_Actin11_F CAGCCACACTGTCCCCATCTA 
qRT_Actin11_R AGCAAGGTCGAGACGAAGGA 
qRT_OgUBQ10_F TGGTCAGTAACCAGCCAGTTTGG 
qRT_OgUBQ10_R GCACCACAAATACTTGACGAACAG 
qRT_PPI_F1 GCGACCAGATCCTCTCC 
qRT_PPI_R1 CGAAGGGTTTCTGCATCT 
qRT_HAK6_F ATCTCTGCAAGCTACTCCA 
qRT_HAK6_R AACACACACGACCATCAA 
qRT_HAK5_F TTTCTGTAGTTCTCCTTCCTT 
qRT_HAK5_R TGTATCTGCAACGTGTTCT 



Supplementary Figure 1 

Nucleotide diversity (π) across the genome 

Plots of nucleotide diversity was calculated in 25-kb windows across the 12 African rice chromosomes. 



Supplementary Figure 2 

SNP density across the genome 

Plots of SNP density was calculated in 25-kb windows across the 12 African rice chromosomes. 



Supplementary Figure 3 

Population mutation parameter (θW) across the genome 

Plots of Watterson’s theta calculated in 25-kb windows across the 12 African rice chromosomes. 



Supplementary Figure 4 

STRUCTURE results for African rice 

STRUCTURE results for four different numbers of populations (k). Accessions are sorted by geographic quadrant of the accession collection origins. 



Supplementary Figure 5 

Salt tolerance phenotypes of each West African population 

Box and whisker diagrams of salt stress phenotype values within accessions grouped by geographic quadrant. 





Supplementary Figure 6 

Salinity maps of West African regions 

Bright yellow areas are land used for crop cultivation. In the arid Northwest (top) that spans Senegal and Guinea-Bissau, soil salinity is present far 
inland, and can be traced along rivers that connect to the Atlantic Ocean.  Along the sub-tropical and tropical coast (bottom), salinity decreases from 
North to South along the coast, and inland water tables are less saline than in the arid region. No apparent high salinity levels, that would be associated 
with the presence of coastal rivers, exist inland. 



Supplementary Figure 7 

GWAS results for salt tolerance phenotypes in African rice 

Manhattan and quantile-quantile plots of GWAS results found to have Bonferroni-significant associations. Red lines in Manhattan plots signify the 
Bonferroni threshold. Red lines in quantile-quantile plots signify concordance between observed and expected associations. Trait codes are in 
Supplementary Table 5. 



Supplementary Figure 8 

Genome-wide FST between NW and SW coastal populations 

Plots of mean FST in 25-kb SNP windows across the 12 chromosomes for NW versus SW populations. The horizontal line indicates the 0.5% threshold 
for the outlier test. 
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