1,515 research outputs found
Implication of two new paradigms for futures studies
The paper considers the emergence of two recent perspectives in futures work. One is evolutionary futures studies. The other is critical futures studies. After describing aspects of
each, the paper considers them as alternative rival paradigms in relation to criteria that include: the role of the human being as a subject, the role of interpretation and differences in methodological premises. It concludes that both have contributed to the development of futures methods but that a number of theoretical and methodological problems still remain unsolved
Integal futures based on the paradigm approach
The study discusses the interpretation of integral futures in the context of paradigm. The
dynamic matrix model of futures paradigm has been developed for carrying out meta-analysis
of futures. As a result of meta-analysis integral futures and its new paradigms are defined by
way of reconstructing futures paradigm history as responses to changing societal needs and
through the outcomes of dynamic and comparative analysis of futures paradigms. The study
sets the argument that integral futures: a) is entering a new phase in development of futures
that responses to societal demands for sustainability, democratic participation and continuous
knowledge production and integration, b) it is the phase of cooperation building between
theoretical and practical futures, c) it is the complementary development of co-evolutionary
and participatory paradigms, d) it unfolds further research perspectives for futures
A polymorphism in the base excision repair gene PARP2 is associated with differential prognosis by chemotherapy among postmenopausal breast cancer patients.
BACKGROUND: Personalized therapy considering clinical and genetic patient characteristics will further improve breast cancer survival. Two widely used treatments, chemotherapy and radiotherapy, can induce oxidative DNA damage and, if not repaired, cell death. Since base excision repair (BER) activity is specific for oxidative DNA damage, we hypothesized that germline genetic variation in this pathway will affect breast cancer-specific survival depending on treatment. METHODS: We assessed in 1,408 postmenopausal breast cancer patients from the German MARIE study whether cancer specific survival after adjuvant chemotherapy, anthracycline chemotherapy, and radiotherapy is modulated by 127 Single Nucleotide Polymorphisms (SNPs) in 21 BER genes. For SNPs with interaction terms showing p<0.1 (likelihood ratio test) using multivariable Cox proportional hazard analyses, replication in 6,392 patients from nine studies of the Breast Cancer Association Consortium (BCAC) was performed. RESULTS: rs878156 in PARP2 showed a differential effect by chemotherapy (p=0.093) and was replicated in BCAC studies (p=0.009; combined analysis p=0.002). Compared to non-carriers, carriers of the variant G allele (minor allele frequency=0.07) showed better survival after chemotherapy (combined allelic hazard ratio (HR)=0.75, 95% 0.53-1.07) and poorer survival when not treated with chemotherapy (HR=1.42, 95% 1.08-1.85). A similar effect modification by rs878156 was observed for anthracycline-based chemotherapy in both MARIE and BCAC, with improved survival in carriers (combined allelic HR=0.73, 95% CI 0.40-1.32). None of the SNPs showed significant differential effects by radiotherapy. CONCLUSIONS: Our data suggest for the first time that a SNP in PARP2, rs878156, may together with other genetic variants modulate cancer specific survival in breast cancer patients depending on chemotherapy. These germline SNPs could contribute towards the design of predictive tests for breast cancer patients
Umberto Albarella, Mauro Rizzetto, Hannah Russ, Kim Vickers & Sarah Viner-Daniels (eds.) The Oxford Handbook of Zooarchaeology
BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers
Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers.
Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided.
Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed.
Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
- …
