255 research outputs found
Neurogenesis Drives Stimulus Decorrelation in a Model of the Olfactory Bulb
The reshaping and decorrelation of similar activity patterns by neuronal
networks can enhance their discriminability, storage, and retrieval. How can
such networks learn to decorrelate new complex patterns, as they arise in the
olfactory system? Using a computational network model for the dominant neural
populations of the olfactory bulb we show that fundamental aspects of the adult
neurogenesis observed in the olfactory bulb -- the persistent addition of new
inhibitory granule cells to the network, their activity-dependent survival, and
the reciprocal character of their synapses with the principal mitral cells --
are sufficient to restructure the network and to alter its encoding of odor
stimuli adaptively so as to reduce the correlations between the bulbar
representations of similar stimuli. The decorrelation is quite robust with
respect to various types of perturbations of the reciprocity. The model
parsimoniously captures the experimentally observed role of neurogenesis in
perceptual learning and the enhanced response of young granule cells to novel
stimuli. Moreover, it makes specific predictions for the type of odor
enrichment that should be effective in enhancing the ability of animals to
discriminate similar odor mixtures
Notes sur la pathologie spontanée du chien de laboratoire. 5e note : Un cas d’aplasie partielle du diaphragme, chez le chien
Vérine Henri, Mandairon Y., Murat J. Notes sur la pathologie spontanée du chien de laboratoire. 5e note : Un cas d’aplasie partielle du diaphragme, chez le chien. In: Bulletin de l'Académie Vétérinaire de France tome 122 n°1, 1969. pp. 41-44
Consolidation of an Olfactory Memory Trace in the Olfactory Bulb Is Required for Learning-Induced Survival of Adult-Born Neurons and Long-Term Memory
Background: It has recently been proposed that adult-born neurons in the olfactory bulb, whose survival is modulated by learning, support long-term olfactory memory. However, the mechanism used to select which adult-born neurons following learning will participate in the long-term retention of olfactory information is unknown. We addressed this question by investigating the effect of bulbar consolidation of olfactory learning on memory and neurogenesis. Methodology/Principal Findings: Initially, we used a behavioral ecological approach using adult mice to assess the impact of consolidation on neurogenesis. Using learning paradigms in which consolidation time was varied, we showed that a spaced (across days), but not a massed (within day), learning paradigm increased survival of adult-born neurons and allowed long-term retention of the task. Subsequently, we used a pharmacological approach to block consolidation in the olfactory bulb, consisting in intrabulbar infusion of the protein synthesis inhibitor anisomycin, and found impaired learning and no increase in neurogenesis, while basic olfactory processing and the basal rate of adult-born neuron survival remained unaffected. Taken together these data indicate that survival of adult-born neurons during learning depends on consolidation processes taking place in the olfactory bulb. Conclusion/Significance: We can thus propose a model in which consolidation processes in the olfactory bulb determine both survival of adult-born neurons and long-term olfactory memory. The finding that adult-born neuron survival durin
Conditional ablation and recovery of forebrain neurogenesis in the mouse
Forebrain neurogenesis persists throughout life in the rodent subventricular zone (SVZ) and hippocampal dentate gyrus (DG). Several strategies have been employed to eliminate adult neurogenesis and thereby determine whether depleting adult-born neurons disrupts specific brain functions, but some approaches do not specifically target neural progenitors. We have developed a transgenic mouse line to reversibly ablate adult neural stem cells and suppress neurogenesis. The nestin-tk mouse expresses herpes simplex virus thymidine kinase (tk) under the control of the nestin 2nd intronic enhancer, which drives expression in neural progenitors. Administration of ganciclovir (GCV) kills actively dividing cells expressing this transgene. We found that peripheral GCV administration suppressed SVZ-olfactory bulb and DG neurogenesis within 2 weeks but caused systemic toxicity. Intracerebroventricular GCV infusion for 28 days nearly completely depleted proliferating cells and immature neurons in both the SVZ and DG without systemic toxicity. Reversibility of the effects after prolonged GCV infusion was slow and partial. Neurogenesis did not recover 2 weeks after cessation of GCV administration, but showed limited recovery 6 weeks after GCV that differed between the SVZ and DG. Suppression of neurogenesis did not inhibit antidepressant responsiveness of mice in the tail suspension test. These findings indicate that SVZ and DG neural stem cells differ in their capacity for repopulation, and that adult-born neurons are not required for antidepressant responses in a common behavioral test of antidepressant efficacy. The nestin-tk mouse should be useful for studying how reversible depletion of adult neurogenesis influences neurophysiology, other behaviors, and neural progenitor dynamics. J. Comp. Neurol. 514:567–582, 2009. © 2009 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62155/1/22052_ftp.pd
Olfactory Enrichment Influences Adult Neurogenesis Modulating GAD67 and Plasticity-Related Molecules Expression in Newborn Cells of the Olfactory Bulb
The olfactory bulb (OB) is a highly plastic region of the adult mammalian brain characterized by continuous integration of inhibitory interneurons of the granule (GC) and periglomerular cell (PGC) types. Adult-generated OB interneurons are selected to survive in an experience-dependent way but the mechanisms that mediate the effects of experience on OB neurogenesis are unknown. Here we focus on the new-generated PGC population which is composed by multiple subtypes. Using paradigms of olfactory enrichment and/or deprivation combined to BrdU injections and quantitative confocal immunohistochemical analyses, we studied the effects of olfactory experience on adult-generated PGCs at different survival time and compared PGC to GC modulation. We show that olfactory enrichment similarly influences PGCs and GCs, increasing survival of newborn cells and transiently modulating GAD67 and plasticity-related molecules expression. However, PGC maturation appears to be delayed compared to GCs, reflecting a different temporal dynamic of adult generated olfactory interneuron integration. Moreover, olfactory enrichment or deprivation do not selectively modulate the survival of specific PGC phenotypes, supporting the idea that the integration rate of distinct PGC subtypes is independent from olfactory experience
Cognitive facilitation following intentional odor exposure
This paper reviews evidence that, in addition to incidental olfactory pollutants, intentional odor delivery can impact cognitive operations both positively and negatively. Evidence for cognitive facilitation/interference is reviewed alongside four potential explanations for odor-induced effects. It is concluded that the pharmacological properties of odors can induce changes in cognition. However, these effects can be accentuated/attenuated by the shift in mood following odor exposure, expectancy of cognitive effects, and cues to behavior via the contextual association with the odor. It is proposed that greater consideration is required in the intentional utilization of odors within both industrial and private locations, since differential effects are observed for odors with positive hedonic qualities
Improvement of Aroma in Transgenic Potato As a Consequence of Impairing Tuber Browning
Sensory analysis studies are critical in the development of quality enhanced crops, and may be an important component in the public acceptance of genetically modified foods. It has recently been established that odor preferences are shared between humans and mice, suggesting that odor exploration behavior in mice may be used to predict the effect of odors in humans. We have previously found that mice fed diets supplemented with engineered nonbrowning potatoes (-PPO) consumed more potato than mice fed diets supplemented with wild-type potatoes (WT). This prompted us to explore a possible role of potato odor in mice preference for nonbrowning potatoes. Taking advantage of two well established neuroscience paradigms, the “open field test” and the “nose-poking preference test”, we performed experiments where mice exploration behavior was monitored in preference assays on the basis of olfaction alone. No obvious preference was observed towards -PPO or WT lines when fresh potato samples were tested. However, when oxidized samples were tested, mice consistently investigated -PPO potatoes more times and for longer periods than WT potatoes. Congruently, humans discriminated WT from -PPO samples with a considerably better performance when oxidized samples were tested than when fresh samples were tested in blind olfactory experiments. Notably, even though participants ranked all samples with an intermediate level of pleasantness, there was a general consensus that the -PPO samples had a more intense odor and also evoked the sense-impression of a familiar vegetable more often than the WT samples. Taken together, these findings suggest that our previous observations might be influenced, at least in part, by differential odors that are accentuated among the lines once oxidative deterioration takes place. Additionally, our results suggest that nonbrowning potatoes, in addition to their extended shelf life, maintain their odor quality for longer periods of time than WT potatoes. To our knowledge this is the first report on the use of an animal model applied to the sensory analysis of a transgenic crop
Control of neuronal migration through rostral migratory stream in mice
During the nervous system development, immature neuroblasts have a strong potential to migrate toward their destination. In the adult brain, new neurons are continuously generated in the neurogenic niche located near the ventricle, and the newly generated cells actively migrate toward their destination, olfactory bulb, via highly specialized migratory route called rostral migratory stream (RMS). Neuroblasts in the RMS form chains by their homophilic interactions, and the neuroblasts in chains continually migrate through the tunnels formed by meshwork of astrocytes, glial tube. This review focuses on the development and structure of RMS and the regulation of neuroblast migration in the RMS. Better understanding of RMS migration may be crucial for improving functional replacement therapy by supplying endogenous neuronal cells to the injury sites more efficiently
Molecular complexity determines the number of olfactory notes and the pleasantness of smells
One major unresolved problem in olfaction research is to relate the percept to the molecular structure of stimuli. The present study examined this issue and showed for the first time a quantitative structure-odor relationship in which the more structurally complex a monomolecular odorant, the more numerous the olfactory notes it evokes. Low-complexity odorants were also rated as more aversive, reflecting the fact that low molecular complexity may serve as a warning cue for the olfactory system. Taken together, these findings suggest that molecular complexity provides a framework to explain the subjective experience of smells
- …