20 research outputs found
Longitudinal analyses of the DNA methylome in deployed military servicemen identify susceptibility loci for post-traumatic stress disorder
In order to determine the impact of the epigenetic response to traumatic stress on post-traumatic stress disorder (PTSD), this study examined longitudinal changes of genome-wide blood DNA methylation profiles in relation to the development of PTSD symptoms in two prospective military cohorts (one discovery and one replication data set). In the first cohort consisting of male Dutch military servicemen (n=93), the emergence of PTSD symptoms over a deployment period to a combat zone was significantly associated with alterations in DNA methylation levels at 17 genomic positions and 12 genomic regions. Evidence for mediation of the relation between combat trauma and PTSD symptoms by longitudinal changes in DNA methylation was observed at several positions and regions. Bioinformatic analyses of the reported associations identified significant enrichment in several pathways relevant for symptoms of PTSD. Targeted analyses of the significant findings from the discovery sample in an independent prospective cohort of male US marines (n=98) replicated the observed relation between decreases in DNA methylation levels and PTSD symptoms at genomic regions in ZFP57, RNF39 and HIST1H2APS2. Together, our study pinpoints three novel genomic regions where longitudinal decreases in DNA methylation across the period of exposure to combat trauma marks susceptibility for PTSD
Testing the causal relationships of physical activity and sedentary behaviour with mental health and substance use disorders: a Mendelian randomisation study.
Observational studies suggest that physical activity can reduce the risk of mental health and substance use disorders. However, it is unclear whether this relationship is causal or explained by confounding bias (e.g., common underlying causes or reverse causality). We investigated the bidirectional causal relationship of physical activity (PA) and sedentary behaviour (SB) with ten mental health and substance use disorders, applying two-sample Mendelian Randomisation (MR). Genetic instruments for the exposures and outcomes were derived from the largest available, non-overlapping genome-wide association studies (GWAS). Summary-level data for objectively assessed PA (accelerometer-based average activity, moderate activity, and walking) and SB and self-reported moderate-to-vigorous PA were obtained from the UK Biobank. Data for mental health/substance use disorders were obtained from the Psychiatric Genomics Consortium and the GWAS and Sequencing Consortium of Alcohol and Nicotine Use. MR estimates were combined using inverse variance weighted meta-analysis (IVW). Sensitivity analyses were conducted to assess the robustness of the results. Accelerometer-based average PA was associated with a lower risk of depression (b = -0.043, 95% CI: -0.071 to -0.016, effect size[OR] = 0.957) and cigarette smoking (b = -0.026; 95% CI: -0.035 to -0.017, effect size[β] = -0.022). Accelerometer-based SB decreased the risk of anorexia (b = -0.341, 95% CI: -0.530 to -0.152, effect size[OR] = 0.711) and schizophrenia (b = -0.230; 95% CI: -0.285 to -0.175, effect size[OR] = 0.795). However, we found evidence of reverse causality in the relationship between SB and schizophrenia. Further, PTSD, bipolar disorder, anorexia, and ADHD were all associated with increased PA. This study provides evidence consistent with a causal protective effect of objectively assessed but not self-reported PA on reduced depression and cigarette smoking. Objectively assessed SB had a protective relationship with anorexia. Enhancing PA may be an effective intervention strategy to reduce depressive symptoms and addictive behaviours, while promoting sedentary or light physical activities may help to reduce the risk of anorexia in at-risk individuals
Оценка качества образования на основе компетентностного подхода
В работе представлен практический опыт оценки качества образования в новом формате компетентностного подход
Genetic loci associated with heart rate variability and their effects on cardiac disease risk
Reduced cardiac vagal control reflected in low heart rate variability (HRV) is associated with greater risks for cardiac morbidity and mortality. In two-stage meta-analyses of genome-wide association studies for three HRV traits in up to 53,174 individuals of European ancestry, we detect 17 genome-wide significant SNPs in eight loci. HRV SNPs tag non-synonymous SNPs (in NDUFA11 and KIAA1755), expression quantitative trait loci (eQTLs) (influencing GNG11, RGS6 and NEO1), or are located in genes preferentially expressed in the sinoatrial node (GNG11, RGS6 and HCN4). Genetic risk scores account for 0.9 to 2.6% of the HRV variance. Significant genetic correlation is found for HRV with heart rate (-0.74 < r(g) < -0.55) and blood pressure (-0.35 < r(g) < -0.20). These findings provide clinically relevant biological insight into heritable variation in vagal heart rhythm regulation, with a key role for genetic variants (GNG11, RGS6) that influence G-protein heterotrimer action in GIRK-channel induced pacemaker membrane hyperpolarization
Erratum: Genetic loci associated with heart rate variability and their effects on cardiac disease risk
Correction to article number 15805 published in June 2017 in Nature Communications, vol 8
Erratum: Genetic loci associated with heart rate variability and their effects on cardiac disease risk
Correction to article number 15805 published in June 2017 in Nature Communications, vol 8
Recommended from our members
Gene networks specific for innate immunity define post-traumatic stress disorder.
The molecular factors involved in the development of Post-Traumatic Stress Disorder (PTSD) remain poorly understood. Previous transcriptomic studies investigating the mechanisms of PTSD apply targeted approaches to identify individual genes under a cross-sectional framework lack a holistic view of the behaviours and properties of these genes at the system-level. Here we sought to apply an unsupervised gene-network based approach to a prospective experimental design using whole-transcriptome RNA-Seq gene expression from peripheral blood leukocytes of U.S. Marines (N=188), obtained both pre- and post-deployment to conflict zones. We identified discrete groups of co-regulated genes (i.e., co-expression modules) and tested them for association to PTSD. We identified one module at both pre- and post-deployment containing putative causal signatures for PTSD development displaying an over-expression of genes enriched for functions of innate-immune response and interferon signalling (Type-I and Type-II). Importantly, these results were replicated in a second non-overlapping independent dataset of U.S. Marines (N=96), further outlining the role of innate immune and interferon signalling genes within co-expression modules to explain at least part of the causal pathophysiology for PTSD development. A second module, consequential of trauma exposure, contained PTSD resiliency signatures and an over-expression of genes involved in hemostasis and wound responsiveness suggesting that chronic levels of stress impair proper wound healing during/after exposure to the battlefield while highlighting the role of the hemostatic system as a clinical indicator of chronic-based stress. These findings provide novel insights for early preventative measures and advanced PTSD detection, which may lead to interventions that delay or perhaps abrogate the development of PTSD
Discovery of 95 PTSD loci provides insight into genetic architecture and neurobiology of trauma and stress-related disorders
Posttraumatic stress disorder (PTSD) genetics are characterized by lower discoverability than most other psychiatric disorders. The contribution to biological understanding from previous genetic studies has thus been limited. We performed a multi-ancestry meta-analysis of genome-wide association studies across 1,222,882 individuals of European ancestry (137,136 cases) and 58,051 admixed individuals with African and Native American ancestry (13,624 cases). We identified 95 genome-wide significant loci (80 novel). Convergent multi-omic approaches identified 43 potential causal genes, broadly classified as neurotransmitter and ion channel synaptic modulators (e.g., GRIA1, GRM8, CACNA1E ), developmental, axon guidance, and transcription factors (e.g., FOXP2, EFNA5, DCC ), synaptic structure and function genes (e.g., PCLO, NCAM1, PDE4B ), and endocrine or immune regulators (e.g., ESR1, TRAF3, TANK ). Additional top genes influence stress, immune, fear, and threat-related processes, previously hypothesized to underlie PTSD neurobiology. These findings strengthen our understanding of neurobiological systems relevant to PTSD pathophysiology, while also opening new areas for investigation
