42 research outputs found

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    The T2K experiment

    Get PDF
    The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle θ13 by observing νe appearance in a νμ beam. It also aims to make a precision measurement of the known oscillation parameters, and sin22θ23, via νμ disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem

    Beneficial effects of biochar to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.).

    Get PDF
    The observation of the recent electron neutrino appearance in a muon neutrino beam and the high-precision measurement of the mixing angle θ13\theta_{13} have led to a re-evaluation of the physics potential of the T2K long-baseline neutrino oscillation experiment. Sensitivities are explored for CP violation in neutrinos, non-maximal sin22θ23\sin^22\theta_{23}, the octant of θ23\theta_{23}, and the mass hierarchy, in addition to the measurements of δCP\delta_{CP}, sin2θ23\sin^2\theta_{23}, and Δm322\Delta m^2_{32}, for various combinations of ν\nu-mode and νˉ\bar{\nu}-mode data-taking. With an exposure of 7.8×10217.8\times10^{21}~protons-on-target, T2K can achieve 1-σ\sigma resolution of 0.050(0.054) on sin2θ23\sin^2\theta_{23} and 0.040(0.045)×103 eV20.040(0.045)\times10^{-3}~\rm{eV}^2 on Δm322\Delta m^2_{32} for 100\%(50\%) neutrino beam mode running assuming sin2θ23=0.5\sin^2\theta_{23}=0.5 and Δm322=2.4×103\Delta m^2_{32} = 2.4\times10^{-3} eV2^2. T2K will have sensitivity to the CP-violating phase δCP\delta_{\rm{CP}} at 90\% C.L. or better over a significant range. For example, if sin22θ23\sin^22\theta_{23} is maximal (i.e θ23\theta_{23}=4545^\circ) the range is 115<δCP<60-115^\circ<\delta_{\rm{CP}}<-60^\circ for normal hierarchy and +50<δCP<+130+50^\circ<\delta_{\rm{CP}}<+130^\circ for inverted hierarchy. When T2K data is combined with data from the NOν\nuA experiment, the region of oscillation parameter space where there is sensitivity to observe a non-zero δCP\delta_{CP} is substantially increased compared to if each experiment is analyzed alone.Comment: 40 pages, 27 figures, accepted by PTE

    Recent Results from the T2K Experiment

    No full text
    The Tokai to Kamioka (T2K) experiment studies neutrino oscillations using a beam of muon neutrinos produced by an accelerator. The neutrinos travel from J-PARC on the east coast of Japan and are detected 295 kilometers further away in the Super-Kamiokande detector. A complex of near detectors located 280 meters away from the neutrino production target is used to better characterize the neutrino beam and reduce systematic uncertainties. The experiment aims at measuring electronic neutrino appearance (νμ→νe oscillation) to measure the neutrino mixing angle θ13, and muon neutrino disappearance to measure the neutrino mixing angleθ23 and mass splitting |Δm232|. We report here electron neutrino appearance results using three years of data, recorded until the 2012 summer, as well as muon neutrino disappearance results based on the data coming from the first two years of the experiment
    corecore