328 research outputs found
Ultrastrong conductive in situ composite composed of nanodiamond incoherently embedded in disordered multilayer graphene
Traditional ceramics or metals cannot simultaneously achieve ultrahigh strength and high electrical conductivity. The elemental carbon can form a variety of allotropes with entirely different physical properties, providing versatility for tuning mechanical and electrical properties in a wide range. Here, by precisely controlling the extent of transformation of amorphous carbon into diamond within a narrow temperatureâpressure range, we synthesize an in situ composite consisting of ultrafine nanodiamond homogeneously dispersed in disordered multilayer graphene with incoherent interfaces, which demonstrates a Knoop hardness of up to ~53âGPa, a compressive strength of up to ~54âGPa and an electrical conductivity of 670â1,240âSâm(â1) at room temperature. With atomically resolving interface structures and molecular dynamics simulations, we reveal that amorphous carbon transforms into diamond through a nucleation process via a local rearrangement of carbon atoms and diffusion-driven growth, different from the transformation of graphite into diamond. The complex bonding between the diamond-like and graphite-like components greatly improves the mechanical properties of the composite. This superhard, ultrastrong, conductive elemental carbon composite has comprehensive properties that are superior to those of the known conductive ceramics and C/C composites. The intermediate hybridization state at the interfaces also provides insights into the amorphous-to-crystalline phase transition of carbon
Asymmetrically 4,7-Disubstituted Benzothiadiazoles as Efficient Non-doped Solution-Processable Green Fluorescent Emitters
Asymmetrically 4,7-disubstituted benzothiadiazole derivatives involving a carbazolyl moiety at one end and a solubilizing dendron at the opposite end have been synthesized and characterized. A two-layer electroluminescent device based on one of these solution-processed molecular emitters revealed a maximal luminous efficiency of ~ 10.6 cd Aâ1 and green light emission with CIE coordinates (0.34, 0.58)
The ARGO-YBJ Experiment Progresses and Future Extension
Gamma ray source detection above 30TeV is an encouraging approach for finding
galactic cosmic ray origins. All sky survey for gamma ray sources using wide
field of view detector is essential for population accumulation for various
types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has
been established. Significant progresses have been made in the experiment. A
large air shower detector array in an area of 1km2 is proposed to boost the
sensitivity. Hybrid detection with multi-techniques will allow a good
discrimination between different types of primary particles, including photons
and protons, thus enable an energy spectrum measurement for individual specie.
Fluorescence light detector array will extend the spectrum measurement above
100PeV where the second knee is located. An energy scale determined by balloon
experiments at 10TeV will be propagated to ultra high energy cosmic ray
experiments
Measurement of the Atmospheric Muon Spectrum from 20 to 3000 GeV
The absolute muon flux between 20 GeV and 3000 GeV is measured with the L3
magnetic muon spectrometer for zenith angles ranging from 0 degree to 58
degree. Due to the large exposure of about 150 m2 sr d, and the excellent
momentum resolution of the L3 muon chambers, a precision of 2.3 % at 150 GeV in
the vertical direction is achieved.
The ratio of positive to negative muons is studied between 20 GeV and 500
GeV, and the average vertical muon charge ratio is found to be 1.285 +- 0.003
(stat.) +- 0.019 (syst.).Comment: Total 32 pages, 9Figure
Measurement of W Polarisation at LEP
The three different helicity states of W bosons produced in the reaction e+
e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W
decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to
measure the polarisation of W bosons, and its dependence on the W boson
production angle. The fraction of longitudinally polarised W bosons is measured
to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and
the second systematic, in agreement with the Standard Model expectation
Search for Anomalous Couplings in the Higgs Sector at LEP
Anomalous couplings of the Higgs boson are searched for through the processes
e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70
GeV < m_H < 190 GeV is explored using 602 pb^-1 of integrated luminosity
collected with the L3 detector at LEP at centre-of-mass energies
sqrt(s)=189-209 GeV. The Higgs decay channels H -> ffbar, H -> gamma gamma, H
-> Z\gamma and H -> WW^(*) are considered and no evidence is found for
anomalous Higgs production or decay. Limits on the anomalous couplings d, db,
Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H
-> gamma gamma and H -> Z gamma decay rates
Measurement of W Polarisation at LEP
The three different helicity states of W bosons produced in the reaction e+
e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W
decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to
measure the polarisation of W bosons, and its dependence on the W boson
production angle. The fraction of longitudinally polarised W bosons is measured
to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and
the second systematic, in agreement with the Standard Model expectation
Neutral-Current Four-Fermion Production in e+e- Interactions at LEP
Neutral-current four-fermion production, e+e- -> ffff is studied in 0.7/fb of
data collected with the L3 detector at LEP at centre-of-mass energies
root(s)=183-209GeV. Four final states are considered: qqvv, qqll, llll and
llvv, where l denotes either an electron or a muon. Their cross sections are
measured and found to agree with the Standard Model predictions. In addition,
the e+e- -> Zgamma* -> ffff process is studied and its total cross section at
the average centre-of-mass energy 196.6GeV is found to be 0.29 +/- 0.05 +/-
0.03 pb, where the first uncertainty is statistical and the second systematic,
in agreement with the Standard Model prediction of 0.22 pb. Finally, the mass
spectra of the qqll final states are analysed to search for the possible
production of a new neutral heavy particle, for which no evidence is found
Measurement of Exclusive rho+rho- Production in Mid-Virtuality Two-Photon Interactions and Study of the gamma gamma* -> rho rho Process at LEP
Exclusive rho+rho- production in two-photon collisions between a quasi-real
photon, gamma, and a mid-virtuality photon, gamma*, is studied with data
collected at LEP at centre-of-mass energies root(s)=183-209GeV with a total
integrated luminosity of 684.8pb^-1. The cross section of the gamma gamma* ->
rho+ rho- process is determined as a function of the photon virtuality, Q^2,
and the two-photon centre-of-mass energy, W_gg, in the kinematic region:
0.2GeV^2 < Q^2 <0.85GeV^2 and 1.1GeV < W_gg < 3GeV. These results, together
with previous L3 measurements of rho0 rho0 and rho+ rho- production, allow a
study of the gamma gamma* -> rho rho process over the Q^2-region 0.2GeV^2 < Q^2
< 30 GeV^2
Bose-Einstein Correlations of Neutral and Charged Pions in Hadronic Z Decays
Bose-Einstein correlations of both neutral and like-sign charged pion pairs
are measured in a sample of 2 million hadronic Z decays collected with the L3
detector at LEP. The analysis is performed in the four-momentum difference
range 300 MeV < Q < 2 GeV. The radius of the neutral pion source is found to be
smaller than that of charged pions. This result is in qualitative agreement
with the string fragmentation model
- âŠ