1,522 research outputs found
Autologous Cell Seeding in Tracheal Tissue Engineering
Purpose of Review: There is no consensus on the best technology to be employed for tracheal replacement. One particularly promising approach is based upon tissue engineering and involves applying autologous cells to transplantable scaffolds. Here, we present the reported pre-clinical and clinical data exploring the various options for achieving such seeding. Recent Findings: Various cell combinations, delivery strategies, and outcome measures are described. Mesenchymal stem cells (MSCs) are the most widely employed cell type in tracheal bioengineering. Airway epithelial cell luminal seeding is also widely employed, alone or in combination with other cell types. Combinations have thus far shown the greatest promise. Chondrocytes may improve mechanical outcomes in pre-clinical models, but have not been clinically tested. Rapid or pre-vascularization of scaffolds is an important consideration. Overall, there are few published objective measures of post-seeding cell viability, survival, or overall efficacy. Summary: There is no clear consensus on the optimal cell-scaffold combination and mechanisms for seeding. Systematic in vivo work is required to assess differences between tracheal grafts seeded with combinations of clinically deliverable cell types using objective outcome measures, including those for functionality and host immune response
The Hydrogen–Deuterium Exchange at α-Carbon Atom in N,N,N-Trialkylglycine Residue: ESI-MS Studies
Derivatization of peptides as quaternary ammonium salts (QAS) is a known method for sensitive detection by electrospray ionization tandem mass spectrometry. Hydrogens at α-carbon atom in N,N,N-trialkylglycine residue can be easily exchanged by deuterons. The exchange reaction is base-catalyzed and is dramatically slow at lower pH. Introduced deuterons are stable in acidic aqueous solution and are not back-exchanged during LC-MS analysis. Increased ionization efficiency, provided by the fixed positive charge on QAS group, as well as the deuterium labeling, enables the analysis of trace amounts of peptides
Pseudomonas aeruginosa Adaptation to Lungs of Cystic Fibrosis Patients Leads to Lowered Resistance to Phage and Protist Enemies
Pathogenic life styles can lead to highly specialized interactions with host species, potentially resulting in fitness trade-offs in other ecological contexts. Here we studied how adaptation of the environmentally transmitted bacterial pathogen, Pseudomonas aeruginosa, to cystic fibrosis (CF) patients affects its survival in the presence of natural phage (14/1, ΦKZ, PNM and PT7) and protist (Tetrahymena thermophila and Acanthamoebae polyphaga) enemies. We found that most of the bacteria isolated from relatively recently intermittently colonised patients (1-25 months), were innately phage-resistant and highly toxic for protists. In contrast, bacteria isolated from long time chronically infected patients (2-23 years), were less efficient in both resisting phages and killing protists. Moreover, chronic isolates showed reduced killing of wax moth larvae (Galleria mellonella) probably due to weaker in vitro growth and protease expression. These results suggest that P. aeruginosa long-term adaptation to CF-lungs could trade off with its survival in aquatic environmental reservoirs in the presence of microbial enemies, while lowered virulence could reduce pathogen opportunities to infect insect vectors; factors that are both likely to result in poorer environmental transmission. From an applied perspective, phage therapy could be useful against chronic P. aeruginosa lung infections that are often characterized by multidrug resistance: chronic isolates were least resistant to phages and their poor growth will likely slow down the emergence of beneficial resistance mutations
Tissue-engineered tracheal replacement in a child: a 4-year follow-up study
In 2010, a tissue-engineered trachea was transplanted into a 10-year-old child using a decellularized deceased donor trachea repopulated with the recipient's respiratory epithelium and mesenchymal stromal cells. We report the child's clinical progress, tracheal epithelialization and costs over the 4 years. A chronology of events was derived from clinical notes and costs determined using reference costs per procedure. Serial tracheoscopy images, lung function tests and anti-HLA blood samples were compared. Epithelial morphology and T cell, Ki67 and cleaved caspase 3 activity were examined. Computational fluid dynamic simulations determined flow, velocity and airway pressure drops. After the first year following transplantation, the number of interventions fell and the child is currently clinically well and continues in education. Endoscopy demonstrated a complete mucosal lining at 15 months, despite retention of a stent. Histocytology indicates a differentiated respiratory layer and no abnormal immune activity. Computational fluid dynamic analysis demonstrated increased velocity and pressure drops around a distal tracheal narrowing. Cross-sectional area analysis showed restriction of growth within an area of in-stent stenosis. This report demonstrates the long-term viability of a decellularized tissue-engineered trachea within a child. Further research is needed to develop bioengineered pediatric tracheal replacements with lower morbidity, better biomechanics and lower costs
Evaluating treatments in health care: The instability of a one-legged stool
<p>Abstract</p> <p>Background</p> <p>Both scientists and the public routinely refer to randomized controlled trials (RCTs) as being the 'gold standard' of scientific evidence. Although there is no question that placebo-controlled RCTs play a significant role in the evaluation of new pharmaceutical treatments, especially when it is important to rule out placebo effects, they have many inherent limitations which constrain their ability to inform medical decision making. The purpose of this paper is to raise questions about <it>over-reliance </it>on RCTs and to point out an additional perspective for evaluating healthcare evidence, as embodied in the Hill criteria. The arguments presented here are generally relevant to all areas of health care, though mental health applications provide the primary context for this essay.</p> <p>Discussion</p> <p>This article first traces the history of RCTs, and then evaluates five of their major limitations: they often lack external validity, they have the potential for increasing health risk in the general population, they are no less likely to overestimate treatment effects than many other methods, they make a relatively weak contribution to clinical practice, and they are excessively expensive (leading to several additional vulnerabilities in the quality of evidence produced). Next, the nine Hill criteria are presented and discussed as a richer approach to the evaluation of health care treatments. Reliance on these multi-faceted criteria requires more analytical thinking than simply examining RCT data, but will also enhance confidence in the evaluation of novel treatments.</p> <p>Summary</p> <p>Excessive reliance on RCTs tends to stifle funding of other types of research, and publication of other forms of evidence. We call upon our research and clinical colleagues to consider additional methods of evaluating data, such as the Hill criteria. Over-reliance on RCTs is similar to resting all of health care evidence on a one-legged stool.</p
Tracheal Replacement Therapy with a Stem Cell-Seeded Graft: Lessons from Compassionate Use Application of a GMP-Compliant Tissue-Engineered Medicine
Tracheal replacement for the treatment of end-stage airway disease remains an elusive goal. The use of tissue-engineered tracheae in compassionate use cases suggests that such an approach is a viable option. Here, a stem cell-seeded, decellularized tissue-engineered tracheal graft was used on a compassionate basis for a girl with critical tracheal stenosis after conventional reconstructive techniques failed. The graft represents the first cell-seeded tracheal graft manufactured to full good manufacturing practice (GMP) standards. We report important preclinical and clinical data from the case, which ended in the death of the recipient. Early results were encouraging, but an acute event, hypothesized to be an intrathoracic bleed, caused sudden airway obstruction 3 weeks post-transplantation, resulting in her death. We detail the clinical events and identify areas of priority to improve future grafts. In particular, we advocate the use of stents during the first few months post-implantation. The negative outcome of this case highlights the inherent difficulties in clinical translation where preclinical in vivo models cannot replicate complex clinical scenarios that are encountered. The practical difficulties in delivering GMP grafts underscore the need to refine protocols for phase I clinical trials
Boundaries of Semantic Distraction: Dominance and Lexicality Act at Retrieval
Three experiments investigated memory for semantic information with the goal of determining boundary conditions for the manifestation of semantic auditory distraction. Irrelevant speech disrupted the free recall of semantic category-exemplars to an equal degree regardless of whether the speech coincided with presentation or test phases of the task (Experiment 1) and occurred regardless of whether it comprised random words or coherent sentences (Experiment 2). The effects of background speech were greater when the irrelevant speech was semantically related to the to-be-remembered material, but only when the irrelevant words were high in output dominance (Experiment 3). The implications of these findings in relation to the processing of task material and the processing of background speech is discussed
Entomological Surveillance of Behavioural Resilience and Resistance in Residual Malaria Vector Populations.
The most potent malaria vectors rely heavily upon human blood so they are vulnerable to attack with insecticide-treated nets (ITNs) and indoor residual spraying (IRS) within houses. Mosquito taxa that can avoid feeding or resting indoors, or by obtaining blood from animals, mediate a growing proportion of the dwindling transmission that persists as ITNs and IRS are scaled up. Increasing frequency of behavioural evasion traits within persisting residual vector systems usually reflect the successful suppression of the most potent and vulnerable vector taxa by IRS or ITNs, rather than their failure. Many of the commonly observed changes in mosquito behavioural patterns following intervention scale-up may well be explained by modified taxonomic composition and expression of phenotypically plastic behavioural preferences, rather than altered innate preferences of individuals or populations. Detailed review of the contemporary evidence base does not yet provide any clear-cut example of true behavioural resistance and is, therefore, consistent with the hypothesis presented. Caution should be exercised before over-interpreting most existing reports of increased frequency of behavioural traits which enable mosquitoes to evade fatal contact with insecticides: this may simply be the result of suppressing the most behaviourally vulnerable of the vector taxa that constituted the original transmission system. Mosquito taxa which have always exhibited such evasive traits may be more accurately described as behaviourally resilient, rather than resistant. Ongoing national or regional entomological monitoring surveys of physiological susceptibility to insecticides should be supplemented with biologically and epidemiologically meaningfully estimates of malaria vector population dynamics and the behavioural phenotypes that determine intervention impact, in order to design, select, evaluate and optimize the implementation of vector control measures
- …