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Abstract

Pathogenic life styles can lead to highly specialized interactions with host species, potentially resulting in fitness trade-offs
in other ecological contexts. Here we studied how adaptation of the environmentally transmitted bacterial pathogen,
Pseudomonas aeruginosa, to cystic fibrosis (CF) patients affects its survival in the presence of natural phage (14/1, WKZ, PNM
and PT7) and protist (Tetrahymena thermophila and Acanthamoebae polyphaga) enemies. We found that most of the
bacteria isolated from relatively recently intermittently colonised patients (1–25 months), were innately phage-resistant and
highly toxic for protists. In contrast, bacteria isolated from long time chronically infected patients (2–23 years), were less
efficient in both resisting phages and killing protists. Moreover, chronic isolates showed reduced killing of wax moth larvae
(Galleria mellonella) probably due to weaker in vitro growth and protease expression. These results suggest that P.
aeruginosa long-term adaptation to CF-lungs could trade off with its survival in aquatic environmental reservoirs in the
presence of microbial enemies, while lowered virulence could reduce pathogen opportunities to infect insect vectors;
factors that are both likely to result in poorer environmental transmission. From an applied perspective, phage therapy
could be useful against chronic P. aeruginosa lung infections that are often characterized by multidrug resistance: chronic
isolates were least resistant to phages and their poor growth will likely slow down the emergence of beneficial resistance
mutations.
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Introduction

Parasitic lifestyles often demand complex adaptations to

circumvent host defences [1–3]. As a result, host-parasite

coevolutionary arms races are likely to promote specialization in

parasitic organisms [3,4]. Intracellular bacterial pathogens are one

extreme case of parasite specialization. For example, the small

genomes of Mycoplasma and Rickettsia are thought to arise as a result

of evolutionary transition from free-living environmental bacteria

to more permanent, pathogenic associate of its host species [5,6].

Commonly lost properties include genes related to bacterial energy

metabolism and amino acid synthesis: traits that become non-vital

for pathogen survival because the host can provide a surplus of

nutrients [6]. Moreover, immune evasion may be partly respon-

sible for loss of important virulence genes [7–9]. Interestingly,

similar loss of genes and functions has also been observed with

facultative, environmentally transmitted opportunistic pathogens

[8,10–12], which are continuously released from infected hosts to

external environment before being picked up by new hosts (e.g., in

sputum or faeces of cystic fibrosis (CF) and cholera patients,

respectively). While there has been considerable research into the

consequences of within-host adaptation for pathogen virulence,

[8,10–12], the impact of within-host specialisation on the

opportunistic pathogen survival in external environments is less

clear.

Many environmentally transmitted opportunistic pathogens are

generalists in the sense that many traits confer fitness advantages

both inside and outside the host (dual-use traits), and hence

adaptation to one environment may indirectly increase fitness in

the other [13,14]. Many studies have shown positive correlation

between virulence and survival in environmental reservoirs. For

example, resistance against degradative enzymes of amoeba can

help bacteria to resist attack by mammalian macrophages [15–17],

while proteases responsible for damaging host tissues often have

nutritional role in external environments [13]. This is, however,

not always the case and some pathogens can experience conflicting

selection pressures between external and internal environments

[18–20], where adaptation to one environment leads to reduced

fitness in the other [21,22]. As a result, adaptation to within-host

environments could reduce pathogen survival in external envi-

ronments through trade-offs or vice versa.
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Here we investigated these hypotheses by comparing the

survival and resistance of 28 P. aeruginosa strains isolated from

the lungs of CF patients (Table 1) to different natural protist

(Tetrahymena thermophila and Acanthamoebae polyphaga, Table 2) and

phage enemies (14/1, WKZ, PNM and PT7, Table 2). P. aeruginosa

is a good example of an environmentally transmitted, opportunis-

tic bacterial pathogen with broad host spectrum [23] and currently

about 10% of hospital-acquired infections in the European Union

hospitals are caused by P. aeruginosa [11], where the bacterium

often establishes itself in already compromised patients, such as

those with CF or hospitalized in intensive care units [11,12].

Recent studies involving whole-genome analysis have demonstrat-

ed that P. aeruginosa adaptation to human lung environment leads

to drastic changes including reduced growth, lowered motility,

down regulation of sigma factors, increased biofilm formation, loss

of quorum-sensing [8,10,12]. While most of these factors are

important for bacterial anti-predatory defences [15,24], they can

also affect the P. aeruginosa virulence [8,10,12,25,26].

Bacteria were categorised in two classes according to the

duration of infection: isolates from relatively short-term, intermit-

tent colonisations (1–25 months), and isolates from much older

chronic infection (2–23 years). This classification is based on the

following differences: strains from intermittent colonisations can be

eradicated with antibiotics and no antibodies are yet found from

patient serum, while in chronic infections, pathogens are

discovered continuously from sputum samples for .6 months

and/or there is a significant antibody response against P. aeruginosa

[27]. We used isolates from 7 intermittently colonised and 6

chronically infected patients. When patients had been sampled

repeatedly at different time points, patient mean values were used.

Differences in bacterial resistance against natural enemies were

measured in short-term growth assays in the absence and presence

of all different enemy species. Bacterial virulence was measured in

vivo in wax moth host, and a few potential virulence traits (motility,

biofilm formation, protease expression) were quantified with

standard microbiological assays.

Our results show that bacteria isolated from chronic infections

are more susceptible to both phage and protist predation and less

virulent in wax moth compared to bacteria isolated from

intermittent colonisations. These results complement a recent

study reporting less resistance to phages of clinical isolates

compared with environmental isolates of P. aeruginosa [28] and

suggest that within host adaptation could lead to poorer

transmission if bacteria released to external environments are

exposed to natural microbial enemies before infecting new hosts.

From a more applied perspective, phage therapy - the use of

viruses to specifically kill only the disease-causing bacteria - could

be particularly effective against more phage susceptible bacteria

from chronic P. aeruginosa lung infections that cannot anymore be

eradicated with antibiotics.

Materials and Methods

Ethics statement
The present project is in compliance with the Helsinki

Declaration (Ethical Principles for Medical Research Involving

Human Subjects). Strains were collected from sputum as part of

the patients’ routine care, without any additional sampling. The

ethic committee in ‘‘RegionH The Capital Region of Denmark’’

was consulted, specifically approved this study and declared that

patient informed consent was not needed.

Study species and culture conditions
A total of 28 different P. aeruginosa isolates, two different protist

strains (T. thermophila and A. polyphaga) and 4 different phage species

(14/1, WKZ, PNM and PT7) were used in the experiments (strains

listed in Tables 1 and 2). All phage and protist species used in this

study are commonly found in natural environments [29–31],

where they likely cause high bacterial mortality and hence strong

selection for resistance [28,32]. Bacterial strains were obtained

from Copenhagen CF Center Rigshospitalet (partly described

earlier [33]) and divided into two categories on the basis of

following guidelines [27]: bacterial strains isolated from relatively

young, intermittent colonisations, that can be eradicated with

antibiotics while no antibodies are yet found from patient serum,

and bacteria isolated from chronic infections, where pathogens are

continuously discovered from sputum samples for .6 months

and/or there is a significant antibody response against P. aeruginosa

[27].

Bacterial stocks were prepared by growing bacteria overnight on

KB agar plates, after bacterial mass was streaked and mixed to M9

salt solution with sterile loops (VWR). All clones were diluted to

the same densities (approximately 0.2 optical density at 600 nm

wavelength, equalling approximately 9 6 1076150 cells mL21).

Colony colour and morphology of every strain was recorded by

plating bacteria on King’s B (KB) medium agar plates (M9 salt

solution supplemented with 10 g L21 glycerol, 20 g L21 proteose

peptone and 12 g L21 agar). Both protist stocks were cultured with

non-living resource prior the experiments; Peptone Yeast medium

(PPY; 20 g L21 Peptone and 2.5 g L21 of Yeast extract) was used

for T. thermophila and Proteose Peptone Glucose medium (PPG;

Page’s Amoeba Saline solution supplemented with 15 g L21

Peptone and 18 g L21 of D-glucose) for A. polyphaga. Both protist

stock solutions were diluted ten-fold with M9 buffer to obtain

inoculums for growth measurements. Phage stock solutions were

prepared by growing all frozen phages (–80uC) with PAO1 (ATCC

#15692) strain in liquid KB medium for 24h before chloroforming

(10% volume) and centrifugation to purify phages from bacteria.

Phages were stored at 4uC. Phage densities were estimated by

diluting and plating three independent stock solutions of each

phage species onto lawns of PAO1 bacterial strain. The mean

6s.e. density (PFU, i.e., plaque forming units) for each phage

species was as follows: 14/1: 591,666,666617638342; WKZ:

305,000,000694,648,472; PNM: 205,000,000 671,821,538; PT7:

1,065,000,0006150,582,203. All species were always grown at

28uC.

Bacterial growth measurements in the absence and
presence of phage and protist enemies

The growth of all bacterial strains (starting densities of

approximately 105 cells mL21; see methodology for equalizing

inoculum above) was measured both in the absence and presence

of every single enemy in 200 mL of fresh 10% KB medium by

using a photo spectrometer (Bio-Tek Instruments, Inc.,Winooski,

VT, USA, OD 600 nm). In the enemy-cocultures, small inoculums

of every enemy were subsequently added to microplate wells

immediately after inoculating bacteria: 20–25 cells of A. polyphaga,

10–15 cells of T. thermophila, 591666 particles of 14/1 phage,

305000 particles of WKZ phage, 205000 particles of PNM phage

and 1065000 particles of PT7 phage. All growth measurements

were replicated twice and run for 91 hours.

Bacterial life-history trait measurements
We determined the resistance to phages by streaking indepen-

dent bacterial clones across a line of each phage (40 mL) that had

Within-Host Specialization and Enemy Resistance
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Table 1. Bacterial strains used in this study.

Strain No. Patient No. Source Year obtained Infection type Duration of infection Colony type

1 1 Copenhagen CF Center Rigshospitalet 2004 Intermittent
colonisation

6 months Yellow

2 2 Copenhagen CF Center Rigshospitalet 2005 Intermittent
colonisation

6 months Yellow

3 2 Copenhagen CF Center Rigshospitalet 2006 Intermittent
colonisation

12 months Yellow

4 2 Copenhagen CF Center Rigshospitalet 2006 Intermittent
colonisation

25 months Yellow

5 3 Copenhagen CF Center Rigshospitalet 2005 Intermittent
colonisation

16 months Yellow

6 3 Copenhagen CF Center Rigshospitalet 2006 Intermittent
colonisation

22 months Yellow

7 4 Copenhagen CF Center Rigshospitalet 2005 Intermittent
colonisation

1 month Yellow

8 5 Copenhagen CF Center Rigshospitalet 2004 Intermittent
colonisation

4 months Yellow

9 6 Copenhagen CF Center Rigshospitalet 2007 Intermittent
colonisation

4 months White

10 7 Copenhagen CF Center Rigshospitalet 2006 Intermittent
colonisation

, 1 month Yellow

11 8 Copenhagen CF Center Rigshospitalet 1978 Chronic infection 2 years Yellow

12 8 Copenhagen CF Center Rigshospitalet 1985 Chronic infection 9 years Yellow

13 8 Copenhagen CF Center Rigshospitalet 1987 Chronic infection 11 years Yellow

14 8 Copenhagen CF Center Rigshospitalet 1991 Chronic infection 15 years White

15 9 Copenhagen CF Center Rigshospitalet 1984 Chronic infection 1 year Yellow

16 9 Copenhagen CF Center Rigshospitalet 1988 Chronic infection 5 years White

17 9 Copenhagen CF Center Rigshospitalet 2004 Chronic infection 21 years White

18 10 Copenhagen CF Center Rigshospitalet 1997 Chronic infection 4 years White

19 10 Copenhagen CF Center Rigshospitalet 1999 Chronic infection 6 years Yellow

20 10 Copenhagen CF Center Rigshospitalet 2004 Chronic infection 11 years White

21 11 Copenhagen CF Center Rigshospitalet 1979 Chronic infection 3 years Yellow

22 11 Copenhagen CF Center Rigshospitalet 1984 Chronic infection 8 years Yellow

23 11 Copenhagen CF Center Rigshospitalet 1985 Chronic infection 9 years Yellow

24 11 Copenhagen CF Center Rigshospitalet 1994 Chronic infection 18 years White

25 11 Copenhagen CF Center Rigshospitalet 1999 Chronic infection 23 years White

26 12 Copenhagen CF Center Rigshospitalet 1991 Chronic infection 1 year White

27 13 Copenhagen CF Center Rigshospitalet 1986 Chronic infection 6 years White

28 13 Copenhagen CF Center Rigshospitalet 2002 Chronic infection 22 years White

doi:10.1371/journal.pone.0075380.t001

Table 2. Protist and phage species used in this study.

Strain Enemy type Source Family

Tetrahymena thermophila, CCAP 1630/1U Ciliate protist Unknown, Claff (1939) Tetrahymenidae

Acanthamoeba polyphaga, CCAP 1501/18 Amoeba protist Unknown, Rowbotham (1985) Amoebadie

14/1 Phage Sewage water, Regensburg, Germany, 2000 Myoviridae A1

WKZ Phage Sewage water, Kazakhstan, 1975 Myoviridae A1

PNM Phage Mtkvari River, Tbilisi, Georgia, 1999 Podoviridae C1

PT7 Phage Lake Ku, Tibilisi, Georgia, 1999 Myoviridae A1

doi:10.1371/journal.pone.0075380.t002

Within-Host Specialization and Enemy Resistance
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previously streaked and dried on a KB agar plate. A colony was

scored as resistant if there was no inhibition of growth by the

phage [34].

Bacterial biofilm was measured by growing all clones for 48 h in

10% KB, after, 50 ml of 1% crystal violet solution was added to the

microplate wells and rinsed off with distilled water after

10 minutes. The remaining crystal-violet attached to bacteria

was dissolved in 96% ethanol and the amount of biofilm formed

measured as OD at 600 nm [35].

Motility was assessed by sticking a trace inoculum (,2 mL) of

each clone with a sterile loop (VWR) to the centre of a semi-solid

agar plate (as described above, except 0.7% agar). The plates were

photographed after 48h and the colonised area was determined

with ImagePro Plus 4.5 software (Media Cybernetics).

Protease expression was measured as a zone of hydrolysis on KB

agar plates incremented with 20 g L21 of skim milk powder

(Merck). Bacteria were first grown in 10% KB for 48 h, before

inserting 10 mL of solution on sterilised filter disk ( 6 mm,

Whatman). Protease expression was determined as a zone of

hydrolysis after 24h incubation.

Bacterial virulence was measured in wax moth larvae (Galleria

mellonella, Lepidoptera; Pyralidae; Livefood UK). Bacterial viru-

lence measured in G. mellonella, mammals and mammalian cell

cultures have been found to correlate positively, making it an ideal

model host for general virulence testing [36,37]. All larvae were

weighed before infection to achieve equal mean weights between

treatments (bacterial group: F4, 331 = 1.5, P = 0.19). Eight larvae

per clone were injected with 30 mL (on average 361056150 CFU)

of bacterial solution between the abdominal segments 6 and 7 with

a 1 mL Terumo syringe. Sixteen larvae were injected with 30 mL

of M9 buffer to control the damage caused by the injection itself.

After infection, larvae were placed on individual wells of 24-well

cell culture plates and survival monitored at 2-hour intervals for 3

days at 28uC. Larvae were defined as dead when they did not

respond to touch with forceps. Larvae that were still alive after 5

days from infection were given time-to-death value of 141 hours.

Statistical analyses
A General linear mixed model (GLMM) was used to analyse

differences in bacterial growth in the absence and presence of

protists and phage enemies. Because some patients had been

sampled at repeatedly different time points, patient mean values

were used. We first compared the means of patients suffering from

intermittent colonisation or chronic infection. Second, we analysed

the effect of infection duration by comparing chronic patients with

infection lasting either under or over ten years. Lastly, we analysed

the significance of bacterial colony type (yellow or white) of

chronic patients that had both colony types present (patients no 8–

11; Table 1). In these models, bacterial growth was explained with

infection type (intermittent vs. chronic), enemy type (no enemy,

phage, amoeba, ciliate), time, and additionally, with the length of

chronic infection (,10 and .10 years) or colony type (yellow or

white). When needed, additional GLMMs were carried out to

compare the effect of phage species. In all growth data analyses,

populations were used as a subject variables, time as a repeated

factor (5 levels; 16, 24, 48, 72 and 91 hours) and patient identity

included in the models as a random factor (nested infection type).

Phage resistance was analysed with ANOVA where arcsin

transformed patient mean resistances were explained by infection

type and phage species. Bacterial motility, biofilm formation,

protease expression and virulence were analysed with indepen-

dent-samples T-tests. Non-parametric Mann-Whitney test was

used to analyse bacterial ability to kill protists.

Results

Bacterial defence against different enemies
Bacterial growth was affected by the infection type

(F1, 58.2 = 63.8, P,0.001) and the presence and type of enemy

(F3, 87.7 = 17.6, P,0.001, Figure 1a-b): chronic bacterial isolates

grew generally slower (P,0.001), and while the ciliate T.

thermophila clearly reduced bacterial densities regardless of the

infection type (P,0.001), A. polyphaga amoeba and phages had no

effect on bacterial densities (P = 0.84 and P = 0.099, respectively).

There was a significant interaction between enemy type and

infection type: phages reduced the densities of bacteria isolated

from chronic infection regardless of the phage species (infection

type 6 enemy type: F3, 87.7 = 7.7, P,0.001; pairwise comparison:

P = 0.04; phage species: F3, 15.6 = 0.37, P = 77, Figure 1a-b), while

phages had no effect on bacteria associated with intermittent

colonisation (pairwise comparison: P = 0.59). To further explore

this, we next compared chronic patients that had been sampled

repeatedly in time, and asked if bacterial growth in the absence

and presence of enemies differ between samples isolated from less

than ten year long and over ten year long chronic infections. We

found similar main effect for the enemy type as above

(F3, 52.4 = 1557, P,0.001): amoebae had no effect on bacterial

densities (P = 0.81), while both ciliates and phages decreased

bacterial densities (P,0.001 and P,0.001, respectively; data not

shown). However, the effect of time on bacterial growth was non-

significant (F1, 13.7 = 0.42, P = 0.52) regardless of the enemy

community type (infection length 6 enemy type: F3, 52.4 = 0.21,

P = 0.889; data not shown), suggesting that the duration of chronic

infection does not significantly alter bacterial resistance against

ciliate and phage enemies.

Interestingly, we found that 90% of intermittent bacterial

isolates formed yellow colonies similar to P. aeruginosa PAO1 strain,

while chronic isolates formed yellow colonies in 44% and white

colonies in 56% of cases (Fisher exact test colony type 6 infection

class, P = 0.041, Table 1). As a result, we compared if white and

yellow chronic colony types differ in their growth under different

enemies. The enemy communities had similar effects as above

(F3, 50.3 = 4.7, P = 0.006): amoebae had no effect on bacterial

densities (P = 0.87), while both ciliate and phages decreased

bacterial densities (P = 0.005 and P = 0.016, respectively). More-

over, white colonies were poorer at growing (F1, 66.9 = 8.3,

P = 0.005), and this difference was also dependent on enemy

community type (colony type 6 enemy type: F3, 66.2 = 2.9,

P = 0.04): both ciliates and phages were better at reducing the

densities of white bacterial colony types (F3, 33.2 = 4.3, P = 0.01;

Figure S1c-d) compared to yellow colony types (F3, 42.8 = 2.6,

P = 0.06), which suggest that the reduced defence to ciliate and

phage enemies was especially attributed to chronic white colony

types which were often observed in the later stages of chronic

infections (Table 1).

The lack of phage effect on the growth of bacteria isolated from

intermittent colonisations can be in part explained by innate phage

resistance: bacterial resistance to phages was generally higher with

intermittent compared to chronic isolates (F1, 40 = 6.2, P = 0.017;

Figure 1c) with different phage species having similar effects

(F3, 40 = 0.24, P = 0.86). While the duration of infection did not

clearly affect the degree of phage resistance with chronic isolates

(F1, 36 = 3.17, P = 0.083; data not shown), the chronic white colony

types were less phage resistant compared to yellow colony types

(F1, 16 = 4.3, P = 0.05; mean resistance and 6 1 standard error for

intermittent and chronic patients respectively: 0.32160.094 and

060.079). This suggests that the lowered phage resistance of

Within-Host Specialization and Enemy Resistance
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chronic isolates was due to lower resistance of white colony types

associated with later stages of chronic infections.

The lack of A. polyphaga effect on bacterial densities was likely

due to P. aeruginosa toxicity: all bacterial clones were able to kill A.

polyphaga amoeba (no living cells observed after 91 h cocultivation;

data not shown). In the case of T. thermophila, chronic isolates were

less toxic compared to intermittent CF-lung isolates (Mann-

Whitney U = 6, P = 0.035, Figure 1d; while no difference in

toxicity was found between ,10 years and .10 years old isolates

(Mann-Whitney U = 13, P = 0.42; data not shown), or yellow and

white colony types (Mann-Whitney U = 11, P = 0.5; data not

shown).

In summary, these results suggest that P. aeruginosa clones

isolated from chronic CF-lungs grow slower and are more

susceptible to phages and ciliates compared to bacteria isolated

from intermittently colonised CF-lungs.

Bacterial virulence trait measurements
Adaptation to the lung environment decreased bacterial

virulence, i.e., there was increased larval survival associated with

Figure 1. Bacterial growth in the absence and presence of different enemies. The growth of bacteria isolated from patients with
intermittent colonisation (a) or chronic (b) CF-lung infection; panels show mean values averaged over time (91 hours). Panels (c) and (d) show
bacterial phage resistance (c) and ability to kill ciliate protist (d) for patients suffering from intermittent colonisation or chronic CF-lung infection. Error
bars denote 6 1 SEM.
doi:10.1371/journal.pone.0075380.g001

Within-Host Specialization and Enemy Resistance
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chronic infection versus intermittent colonisation (infection type:

P = 0.001, t = –4.5, df = 10; Figure 2a). However, no difference

was found between ,10 years and .10 years old chronic isolates

(P = 0.3, t = –1.0, df = 9), or between white and yellow chronic

isolates (P = 0.26, t = –1.2, df = 6; data not shown). Also, no

difference in motility or biofilm formation was found between

intermittent and chronic isolates (P = 0.21, t = 1.3, df = 10 and

P = 0.56, t = 0.58, df = 10, respectively, Figure 2b-c), ,10 years

and .10 years old chronic isolates (P = 0.33, t = –1, df = 9 and

P = 0.92, t = –0.9, df = 9, respectively), or white and yellow chronic

isolates (P = 0.4, t = –0.89, df = 6 and P = 0.83, t = 0.22, df = 6,

respectively; data not shown). However, bacterial protease activity

was clearly higher with more virulent, intermittent isolates

(P = 0.003, t = 3.9, df = 10; Figure 2b), while ,10 years and

.10 years old chronic isolates (P = 0.97, t = 0.03, df = 9), and

white and yellow chronic isolates (P = 0.39, t = –0.9, df = 6) had

equally high protease expression (data not shown). These results

show that within-host specialisation leads to lowered virulence,

which could be mechanistically explained by lowered protease

expression.

Discussion

Here we studied how P. aeruginosa adaptation to the lungs of CF

patients affects its fitness in external environments. We found that P.

aeruginosa bacteria isolated from chronic CF-lung infections were less

efficient at killing protists and had lower resistance against phages

compared to bacteria isolated from intermittent CF-lung colonisa-

tions. This difference was partly explained by the high frequency of

small, smooth colony variants in chronic infections, which showed

poor growth in liquid medium and were especially susceptible to

phages. The chronic isolates’ increased susceptibility to ciliate and

phage enemies also correlated with lowered virulence in the insect

host. However, the duration of chronic infection (,10 vs. .10 years)

had minor effects on bacterial fitness, suggesting that prolonged

selection within host did not further shape bacterial virulence or

resistance to natural enemies. Together these results suggest that P.

aeruginosa transition from intermittent colonisation to chronic CF-

lung infection leads to fitness costs in external environment

potentially leading to poorer environmental transmission.

That long-term chronic infection in CF-lung environment was

associated with greatly reduced resistance to phages was somewhat

surprising, given that adaption to the CF-lung is associated with

loss and alteration of range of potential phage receptors [8,38],

which could potentially lead to higher phage resistance. We

suggest three possible reasons for our findings. First, phage-

imposed selection might be stronger during intermittent colonisa-

tions resulting in relatively higher phage resistance. While it has

been reported that phages are found in CF-lungs [39,40], these

studies are often based on purely on detection of phage, e.g. by

electron microscopy [39] or sequencing [40], and tell little about

the densities and biological activity of bacteriophages in CF-lungs.

For example, chronic CF-lungs could be dominated by lysogenic

prophages that reside most of the time within bacterial genomes

and only occasionally induce lytic infection of bacterial cells [41];

in this case, phages might have a relatively small role in regulating

bacterial densities despite their prevalence. Second, resistance

mutations are often associated with costs [42], and these costs

could be increased if chronic infections experience more stressful

environments than intermittent colonisations, even if phage-

imposed selection is comparable [43]. Finally, selection for phage

resistance may be reduced, or actively selected against, in both

intermittent colonisation and chronic infections, but loss of

resistance (through selection or even drift, if phage resistance is

selectively neutral) has occurred to a greater extent in he chronic

infections. Consistent with this view, a recent study reported that

clinical P. aeruginosa isolates have generally lower phage resistance

compared to environmental P. aeruginosa isolates [28]; In other

words, it is possible that phages select for high resistance in

environmental reservoirs [44], while the resistance is lost during

chronic bacterial infections in the absence of phage selection.

Bacteria isolated from chronic infections were generally less

effective at killing T. thermophila ciliates (although, surprisingly,

ciliates reduced density of both types of infections to the same

extent), while both intermittent and chronic isolates were deadly

for A. amoebae. The chronic CF isolates’ reduced ability to kill

ciliates could be explained by reduced production of toxic exo-

factors. It has been shown previously that adaptation to CF-lungs

reduces rhamnolipid and elastase expression [45], while quorum-

sensing deficient mutants typically observed in CF-lungs are less

toxic for nematodes [26], Rhynchomonas nasuta protists [46] and T.

pyriformis (Friman et al. [In press]). In support, we found that the

protease expression of chronic isolates was clearly reduced

compared to bacteria isolated from intermittent colonisations. As

for phage resistance, protease expression (and toxicity to protists in

general) could be lost during chronic infections simply because it is

costly having negative effect on bacterial growth [47], because it

provokes stronger immune responses towards the pathogen [48],

or is selectively neutral and is lost through drift. In contrast to T.

thermophila, A. polyphaga amoebae were killed in all bacterial co-

cultures regardless of the type of infection probably because they

were more sensitive to bacterial toxins or because bacteria were

simply able to overgrow them in relatively rich nutrient medium.

The rise of small and white P. aeruginosa colony types is often

connected to enhanced persistence and survival during long-term

cystic fibrosis infections [8,49]. We found that both phages and

ciliates were more efficient in reducing the densities of white

colony type. Which made this colony type especially vulnerable?

One explanation for lowered resistance to ciliates could lie in

reduced growth and toxicity. Furthermore, even though yellow

and white colony types did not differ in in mean motility or biofilm

formation, it is still possible that for example the biofilm structure

or the number of pili differed between these colony types. While

these both traits has been connected to changes in both P.

aeruginosa phage resistance and colony morphology [50], further

tests are11 needed to confirm this.

Consistent with previous work [12], adaptation to CF-lung

environment also led to reduction in bacterial virulence in wax

moth hosts. The loss of virulence was connected to chronic isolates

that were poor at growing and expressed weakly proteases, while

no clear changes in biofilm formation or motility was observed

(lack of effect on motility probably due to pooling of different aged

bacterial isolates to patient means for analysis). Whether slow

growth and reduced virulence is itself adaptive in terms of helping

bacterial cells to go unnoticed by host immune system [51] or

resist antimicrobial chemotherapy [52], or if it is a pleiotropic cost

associated with other within-host adaptation is unclear.

The observed loss of phage resistance is encouraging in relation

to phage therapy: the use of viruses to specifically kill only the

disease-causing bacteria [53–55]. First, bacterial isolates from

chronic infections were especially sensitive to phages. Second,

chronic bacterial isolates had poor growth and small population

sizes, which will make the emergence of beneficial resistance

mutations less likely. Third, if adaptive changes behind within-host

adaptation are due to loss of genetic material [56], bacteria might

not be able to reverse evolution without horizontal gene transfer.

As a result, phage therapy could prove especially effective against

chronic bacterial infections that cannot anymore be eradicated
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with antibiotics. Even though potential complications might rise

from the spatial distribution and within- and between-species

diversity of bacterial infections [57–59], identifying similar fitness

trade-offs for bacterial survival between natural and clinical

environments could serve as a starting point for developing

potential alternatives for antibiotics. For example, within-host

specialization could make bacteria more susceptible to bacterium-

specific toxins (bacteriocins) that are used in intraspecific bacterial

competition in natural environments [47,60], but might not be

needed in the lungs of CF patients.

To conclude, our study shows that environmentally transmitted

pathogens’ long-term adaptation to a within-host environment is

associated with reduced defence against natural phage and protist

enemies. This result supports the general idea that more

permanent association with host organisms leads to loss of

pathogen virulence, which might play a key role in explaining

evolutionary transitions from antagonistic interactions towards

commensalisms and mutualism. Moreover, even though the effect

of protist predation on bacterial virulence evolution has been

studied quite extensively [14–18,20], the consequences of within-

host adaptation for opportunistic pathogens’ survival, transmission

and prevalence in environmental reservoirs are still poorly

understood. For example, from the epidemiological point of view,

chronically infected patients could be seen as pathogen ‘‘sinks’’

because their further spread and transmission through environ-

ment is limited by their reduced survival in the presence of natural

microbial enemies. In the future more effort should thus be put on

trying to understand the connectedness and selection in clinical

Figure 2. Bacterial trait measurements. Bacterial virulence measured in vivo for patients with intermittent colonisation or chronic CF-lung
infection (a): virulence is defined as less hours to larval death, more virulent the bacterial strain. Panel (b) shows difference in bacterial protease
expression, panel (c) difference in biofilm formation and panel (d) difference in motility for patients suffering from intermittent colonisation or chronic
CF-lung infection. Error bars denote 6 1 SEM.
doi:10.1371/journal.pone.0075380.g002
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and environmental compartments and how they jointly define the

evolution of pathogen virulence [19].

Supporting Information

Figure S1 Bacterial growth in the absence and presence
of different enemies. The growth of bacteria isolated from

patients with intermittent colonisation (a) or chronic (b) CF-lung

infection. Panels (c) and (d) show bacterial growth in the absence

and presence of different enemies for yellow (c) and white (d) colony

type means for chronic CF-patients. Error bars denote 6 1 SEM.

(TIF)
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