222 research outputs found

    Quantifying the improvement of surrogate indices of hepatic insulin resistance using complex measurement techniques

    Get PDF
    We evaluated the ability of simple and complex surrogate-indices to identify individuals from an overweight/obese cohort with hepatic insulin-resistance (HEP-IR). Five indices, one previously defined and four newly generated through step-wise linear regression, were created against a single-cohort sample of 77 extensively characterised participants with the metabolic syndrome (age 55.6±1.0 years, BMI 31.5±0.4 kg/m2; 30 males). HEP-IR was defined by measuring endogenous-glucose-production (EGP) with [6–62H2] glucose during fasting and euglycemic-hyperinsulinemic clamps and expressed as EGP*fasting plasma insulin. Complex measures were incorporated into the model, including various non-standard biomarkers and the measurement of body-fat distribution and liver-fat, to further improve the predictive capability of the index. Validation was performed against a data set of the same subjects after an isoenergetic dietary intervention (4 arms, diets varying in protein and fiber content versus control). All five indices produced comparable prediction of HEP-IR, explaining 39–56% of the variance, depending on regression variable combination. The validation of the regression equations showed little variation between the different proposed indices (r2 = 27–32%) on a matched dataset. New complex indices encompassing advanced measurement techniques offered an improved correlation (r = 0.75, P<0.001). However, when validated against the alternative dataset all indices performed comparably with the standard homeostasis model assessment for insulin resistance (HOMA-IR) (r = 0.54, P<0.001). Thus, simple estimates of HEP-IR performed comparable to more complex indices and could be an efficient and cost effective approach in large epidemiological investigations

    Winter Bird Assemblages in Rural and Urban Environments: A National Survey

    Get PDF
    Urban development has a marked effect on the ecological and behavioural traits of many living organisms, including birds. In this paper, we analysed differences in the numbers of wintering birds between rural and urban areas in Poland. We also analysed species richness and abundance in relation to longitude, latitude, human population size, and landscape structure. All these parameters were analysed using modern statistical techniques incorporating species detectability. We counted birds in 156 squares (0.25 km2 each) in December 2012 and again in January 2013 in locations in and around 26 urban areas across Poland (in each urban area we surveyed 3 squares and 3 squares in nearby rural areas). The influence of twelve potential environmental variables on species abundance and richness was assessed with Generalized Linear Mixed Models, Principal Components and Detrended Correspondence Analyses. Totals of 72 bird species and 89,710 individual birds were recorded in this study. On average (±SE) 13.3 ± 0.3 species and 288 ± 14 individuals were recorded in each square in each survey. A formal comparison of rural and urban areas revealed that 27 species had a significant preference; 17 to rural areas and 10 to urban areas. Moreover, overall abundance in urban areas was more than double that of rural areas. There was almost a complete separation of rural and urban bird communities. Significantly more birds and more bird species were recorded in January compared to December. We conclude that differences between rural and urban areas in terms of winter conditions and the availability of resources are reflected in different bird communities in the two environments

    A prospective study of monitoring practices for metabolic disease in antipsychotic-treated community psychiatric patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with severe mental illness are at increased risk for metabolic and cardiovascular disease. A number of recent guidelines and consensus statements recommend stringent monitoring of metabolic function in individuals receiving antipsychotic drugs.</p> <p>Methods</p> <p>We conducted a prospective cohort study of 106 community-treated psychiatric patients from across the diagnostic spectrum from the Northeast of England to investigate changes in metabolic status and monitoring practices for metabolic and cardiovascular disease. We undertook detailed anthropometric and metabolic assessment at baseline and follow-up, and examined clinical notes and hospital laboratory records to ascertain monitoring practices.</p> <p>Results</p> <p>A high prevalence of undiagnosed and untreated metabolic disease was present at baseline assessment. Mean follow-up time was 599.3 (SD ± 235.4) days. Body mass index (p < 0.005) and waist circumference (p < 0.05) had significantly increased at follow-up, as had the number of individuals who were either overweight or obese. Fifty-three per cent of individuals had hypertriglyceridemia, and 31% had hypercholesterolemia, but only 7% were receiving lipid-lowering therapy. Monitoring practices were poor. Recording of measures of adiposity occurred in 0% of individuals, and > 50% of subjects had neither blood glucose nor lipids monitored during the follow-up period.</p> <p>Conclusion</p> <p>This cohort has a high prevalence of metabolic disease and heightened cardiovascular risk. Despite the publication of a number of recommendations regarding physical health screening in this population, monitoring rates are poor, and physical health worsened during the follow-up period.</p

    Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery

    Full text link
    "This is the peer reviewed version of the following article: Oroval, Mar, Paula Díez, Elena Aznar, Carmen Coll, María Dolores Marcos, Félix Sancenón, Reynaldo Villalonga, and Ramón Martínez-Máñez. 2016. Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal 23 (6). Wiley: 1353 60. doi:10.1002/chem.201604104, which has been published in final form at https://doi.org/10.1002/chem.201604104. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] We describe herein the preparation of glucose-sensitive capped mesoporous silica nanoparticles for insulin delivery. The new material consists of an expanded-pore nanometric silica support grafted with 1-propyl-1-H-benzimidazole groups, loaded with fluorescein isothiocyanate-labeled insulin (FITC-Ins) and capped by the formation of inclusion complexes between cyclodextrin-modified glucose oxidase (CD-GOx) and the benzimidazole groups grafted on the mesoporous support. Insulin delivery from the gated material in simulated blood plasma was assessed upon addition of glucose. Glucose is transformed by GOx into gluconic acid, which promoted the dethreading of the benzimidazole-CD-GOx inclusion complexes, allowing cargo release. Small quantities of this support would be needed to release the amount of insulin necessary to decrease diabetic blood glucose concentrations to regular levels.The authors thank the Spanish Government (projects CTQ2011-24355, MAT2015-64139-C4-1-R, CTQ2014-58989-P, and AGL2015-70235-C2-2-R (MINECO/FEDER)) and the Generalitat Valenciana (project PROMETEOII/2014/047) for support. M.O. thanks the Universitat Politecnica de Valencia for her FPI grant. P.D. thanks the Ministerio de Economia y Competitividad for her FPI grant (BES-2012-054066). C.C. thanks the Generalitat Valenciana for her postdoctoral contract VALi+D.Oroval, M.; Díez, P.; Aznar, E.; Coll Merino, MC.; Marcos Martínez, MD.; Sancenón Galarza, F.; Villalonga, R.... (2017). Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal. 23(6):1353-1360. https://doi.org/10.1002/chem.201604104S13531360236Nicole, L., Laberty-Robert, C., Rozes, L., & Sanchez, C. (2014). Hybrid materials science: a promised land for the integrative design of multifunctional materials. Nanoscale, 6(12), 6267-6292. doi:10.1039/c4nr01788aBeltrán-Osuna, Á. A., & Perilla, J. E. (2015). Colloidal and spherical mesoporous silica particles: synthesis and new technologies for delivery applications. Journal of Sol-Gel Science and Technology, 77(2), 480-496. doi:10.1007/s10971-015-3874-2Trewyn, B. G., Slowing, I. I., Giri, S., Chen, H.-T., & Lin, V. S.-Y. (2007). Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release. Accounts of Chemical Research, 40(9), 846-853. doi:10.1021/ar600032uVallet-Regí, M., & Balas, F. (2008). Silica Materials for Medical Applications. The Open Biomedical Engineering Journal, 2(1), 1-9. doi:10.2174/1874120700802010001Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456Aznar, E., Martínez-Máñez, R., & Sancenón, F. (2009). Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opinion on Drug Delivery, 6(6), 643-655. doi:10.1517/17425240902895980Alberti, S., Soler-Illia, G. J. A. A., & Azzaroni, O. (2015). Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli. Chemical Communications, 51(28), 6050-6075. doi:10.1039/c4cc10414eArgyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592tWight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334mKickelbick, G. (2004). Hybrid Inorganic–Organic Mesoporous Materials. Angewandte Chemie International Edition, 43(24), 3102-3104. doi:10.1002/anie.200301751Kickelbick, G. (2004). Mesoporöse anorganisch-organische Hybridmaterialien. Angewandte Chemie, 116(24), 3164-3166. doi:10.1002/ange.200301751Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362Liu, J., Detrembleur, C., De Pauw-Gillet, M.-C., Mornet, S., Jérôme, C., & Duguet, E. (2015). Gold Nanorods Coated with Mesoporous Silica Shell as Drug Delivery System for Remote Near Infrared Light-Activated Release and Potential Phototherapy. Small, 11(19), 2323-2332. doi:10.1002/smll.201402145Fu, Q., Rao, G. V. R., Ista, L. K., Wu, Y., Andrzejewski, B. P., Sklar, L. A., … López, G. P. (2003). Control of Molecular Transport Through Stimuli-Responsive Ordered Mesoporous Materials. Advanced Materials, 15(15), 1262-1266. doi:10.1002/adma.200305165Baeza, A., Guisasola, E., Ruiz-Hernández, E., & Vallet-Regí, M. (2012). Magnetically Triggered Multidrug Release by Hybrid Mesoporous Silica Nanoparticles. Chemistry of Materials, 24(3), 517-524. doi:10.1021/cm203000uHernandez, R., Tseng, H.-R., Wong, J. W., Stoddart, J. F., & Zink, J. I. (2004). An Operational Supramolecular Nanovalve. Journal of the American Chemical Society, 126(11), 3370-3371. doi:10.1021/ja039424uNiedermayer, S., Weiss, V., Herrmann, A., Schmidt, A., Datz, S., Müller, K., … Bräuchle, C. (2015). Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery. Nanoscale, 7(17), 7953-7964. doi:10.1039/c4nr07245fZhang, X., Li, F., Guo, S., Chen, X., Wang, X., Li, J., & Gan, Y. (2014). Biofunctionalized polymer-lipid supported mesoporous silica nanoparticles for release of chemotherapeutics in multidrug resistant cancer cells. Biomaterials, 35(11), 3650-3665. doi:10.1016/j.biomaterials.2014.01.013Patel, K., Angelos, S., Dichtel, W. R., Coskun, A., Yang, Y.-W., Zink, J. I., & Stoddart, J. F. (2008). Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 130(8), 2382-2383. doi:10.1021/ja0772086Bhat, R., Ribes, À., Mas, N., Aznar, E., Sancenón, F., Marcos, M. D., … Martínez-Máñez, R. (2016). Thrombin-Responsive Gated Silica Mesoporous Nanoparticles As Coagulation Regulators. Langmuir, 32(5), 1195-1200. doi:10.1021/acs.langmuir.5b04038Yu, C., Qian, L., Uttamchandani, M., Li, L., & Yao, S. Q. (2015). Single-Vehicular Delivery of Antagomir and Small Molecules to Inhibit miR-122 Function in Hepatocellular Carcinoma Cells by using «Smart» Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 54(36), 10574-10578. doi:10.1002/anie.201504913Yu, C., Qian, L., Uttamchandani, M., Li, L., & Yao, S. Q. (2015). Single-Vehicular Delivery of Antagomir and Small Molecules to Inhibit miR-122 Function in Hepatocellular Carcinoma Cells by using «Smart» Mesoporous Silica Nanoparticles. Angewandte Chemie, 127(36), 10720-10724. doi:10.1002/ange.201504913Kavruk, M., Celikbicak, O., Ozalp, V. C., Borsa, B. A., Hernandez, F. J., Bayramoglu, G., … Arica, M. Y. (2015). Antibiotic loaded nanocapsules functionalized with aptamer gates for targeted destruction of pathogens. Chemical Communications, 51(40), 8492-8495. doi:10.1039/c5cc01869bChu, L.-Y. (2005). Controlled release systems for insulin delivery. Expert Opinion on Therapeutic Patents, 15(9), 1147-1155. doi:10.1517/13543776.15.9.1147Suckale, J. (2008). Pancreas islets in metabolic signaling - focus on the beta-cell. Frontiers in Bioscience, Volume(13), 7156. doi:10.2741/3218Diabetes Care 2014 37Pickup, J. C., Hussain, F., Evans, N. D., & Sachedina, N. (2005). In vivo glucose monitoring: the clinical reality and the promise. Biosensors and Bioelectronics, 20(10), 1897-1902. doi:10.1016/j.bios.2004.08.016Farmer, T. G., Edgar, T. F., & Peppas, N. A. (2008). The future of open- and closed-loop insulin delivery systems. Journal of Pharmacy and Pharmacology, 60(1), 1-13. doi:10.1211/jpp.60.1.0001Carino, G. P., & Mathiowitz, E. (1999). Oral insulin delivery1Abbreviations: GI, gastrointestinal; IDDM, insulin-dependent diabetes mellitus; IU, international units; NIDDM, non-insulin-dependent diabetes mellitus; PIN, phase inversion nanoencapsulation; ZOT, zona occludens toxin.1. Advanced Drug Delivery Reviews, 35(2-3), 249-257. doi:10.1016/s0169-409x(98)00075-1Al Rubeaan, K., Rafiullah, M., & Jayavanth, S. (2015). Oral insulin delivery systems using chitosan-based formulation: a review. Expert Opinion on Drug Delivery, 13(2), 223-237. doi:10.1517/17425247.2016.1107543Mo, R., Jiang, T., Di, J., Tai, W., & Gu, Z. (2014). Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chemical Society Reviews, 43(10), 3595. doi:10.1039/c3cs60436eSato, K., Imoto, Y., Sugama, J., Seki, S., Inoue, H., Odagiri, T., … Anzai, J. (2005). Sugar-Induced Disintegration of Layer-by-Layer Assemblies Composed of Concanavalin A and Glycogen. Langmuir, 21(2), 797-799. doi:10.1021/la048059xTANNA, S., SAHOTA, T., SAWICKA, K., & TAYLOR, M. (2006). The effect of degree of acrylic derivatisation on dextran and concanavalin A glucose-responsive materials for closed-loop insulin delivery. Biomaterials, 27(25), 4498-4507. doi:10.1016/j.biomaterials.2006.04.007Qi, W., Yan, X., Fei, J., Wang, A., Cui, Y., & Li, J. (2009). Triggered release of insulin from glucose-sensitive enzyme multilayer shells. Biomaterials, 30(14), 2799-2806. doi:10.1016/j.biomaterials.2009.01.027Ishihara, K., Kobayashi, M., Ishimaru, N., & Shinohara, I. (1984). Glucose Induced Permeation Control of Insulin through a Complex Membrane Consisting of Immobilized Glucose Oxidase and a Poly(amine). Polymer Journal, 16(8), 625-631. doi:10.1295/polymj.16.625Wu, Z., Zhang, X., Guo, H., Li, C., & Yu, D. (2012). An injectable and glucose-sensitive nanogel for controlled insulin release. Journal of Materials Chemistry, 22(42), 22788. doi:10.1039/c2jm34082hLiu, P., Luo, Q., Guan, Y., & Zhang, Y. (2010). Drug release kinetics from monolayer films of glucose-sensitive microgel. Polymer, 51(12), 2668-2675. doi:10.1016/j.polymer.2010.04.011Zhang, X., Guan, Y., & Zhang, Y. (2012). Dynamically bonded layer-by-layer films for self-regulated insulin release. Journal of Materials Chemistry, 22(32), 16299. doi:10.1039/c2jm33413eAkhtar, N., El-Safty, S. A., Abdelsalam, M. E., & Kawarada, H. (2015). One-Pot Fabrication of Dendritic NiO@carbon-nitrogen Dot Electrodes for Screening Blood Glucose Level in Diabetes. Advanced Healthcare Materials, 4(14), 2110-2119. doi:10.1002/adhm.201500369Zhao, Y., Trewyn, B. G., Slowing, I. I., & Lin, V. S.-Y. (2009). Mesoporous Silica Nanoparticle-Based Double Drug Delivery System for Glucose-Responsive Controlled Release of Insulin and Cyclic AMP. Journal of the American Chemical Society, 131(24), 8398-8400. doi:10.1021/ja901831uZhao, W., Zhang, H., He, Q., Li, Y., Gu, J., Li, L., … Shi, J. (2011). A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated mesoporous silica particles. Chemical Communications, 47(33), 9459. doi:10.1039/c1cc12740cJain, R. N., Huang, X., Das, S., Silva, R., Ivanova, V., Minko, T., & Asefa, T. (2014). Functionalized Mesoporous Silica Nanoparticles for Glucose- and pH-Stimulated Release of Insulin. Zeitschrift für anorganische und allgemeine Chemie, 640(3-4), 616-623. doi:10.1002/zaac.201300604Pérez-Esteve, É., Fuentes, A., Coll, C., Acosta, C., Bernardos, A., Amorós, P., … Barat, J. M. (2015). Modulation of folic acid bioaccessibility by encapsulation in pH-responsive gated mesoporous silica particles. Microporous and Mesoporous Materials, 202, 124-132. doi:10.1016/j.micromeso.2014.09.049Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139De la Torre, C., Casanova, I., Acosta, G., Coll, C., Moreno, M. J., Albericio, F., … Martínez-Máñez, R. (2014). Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells. Advanced Functional Materials, 25(5), 687-695. doi:10.1002/adfm.201403822Aznar, E., Villalonga, R., Giménez, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2013). Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 49(57), 6391. doi:10.1039/c3cc42210kMizutani, M., Yamada, Y., Nakamura, T., & Yano, K. (2008). Anomalous Pore Expansion of Highly Monodispersed Mesoporous Silica Spheres and Its Application to the Synthesis of Porous Ferromagnetic Composite. Chemistry of Materials, 20(14), 4777-4782. doi:10.1021/cm702792eKim, M.-H., Na, H.-K., Kim, Y.-K., Ryoo, S.-R., Cho, H. S., Lee, K. E., … Min, D.-H. (2011). Facile Synthesis of Monodispersed Mesoporous Silica Nanoparticles with Ultralarge Pores and Their Application in Gene Delivery. ACS Nano, 5(5), 3568-3576. doi:10.1021/nn103130qBarrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023Higuchi, T. (1963). Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of Pharmaceutical Sciences, 52(12), 1145-1149. doi:10.1002/jps.2600521210Pérez-Esteve, É., Ruiz-Rico, M., de la Torre, C., Villaescusa, L. A., Sancenón, F., Marcos, M. D., … Barat, J. M. (2016). Encapsulation of folic acid in different silica porous supports: A comparative study. Food Chemistry, 196, 66-75. doi:10.1016/j.foodchem.2015.09.017Bernardos, A., Aznar, E., Coll, C., Martínez-Mañez, R., Barat, J. M., Marcos, M. D., … Soto, J. (2008). Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. Journal of Controlled Release, 131(3), 181-189. doi:10.1016/j.jconrel.2008.07.037Radhakrishnan, K., Gupta, S., Gnanadhas, D. P., Ramamurthy, P. C., Chakravortty, D., & Raichur, A. M. (2013). Protamine-Capped Mesoporous Silica Nanoparticles for Biologically Triggered Drug Release. Particle & Particle Systems Characterization, 31(4), 449-458. doi:10.1002/ppsc.201300219Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia 2006Thomas, C. C., & Philipson, L. H. (2015). Update on Diabetes Classification. Medical Clinics of North America, 99(1), 1-16. doi:10.1016/j.mcna.2014.08.015Mattu, M. J., Small, G. W., & Arnold, M. A. (1997). Determination of Glucose in a Biological Matrix by Multivariate Analysis of Multiple Band-Pass-Filtered Fourier Transform Near-Infrared Interferograms. Analytical Chemistry, 69(22), 4695-4702. doi:10.1021/ac970552

    Diverse tick-borne microorganisms identified in free-living ungulates in Slovakia

    Get PDF
    Background: Free-living ungulates are hosts of ixodid ticks and reservoirs of tick-borne microorganisms in central Europe and many regions around the world. Tissue samples and engorged ticks were obtained from roe deer, red deer, fallow deer, mouflon, and wild boar hunted in deciduous forests of south-western Slovakia. DNA isolated from these samples was screened for the presence of tick-borne microorganisms by PCR-based methods. Results: Ticks were found to infest all examined ungulate species. The principal infesting tick was Ixodes ricinus, identified on 90.4% of wildlife, and included all developmental stages. Larvae and nymphs of Haemaphysalis concinna were feeding on 9.6% of wildlife. Two specimens of Dermacentor reticulatus were also identified. Ungulates were positive for A. phagocytophilum and Theileria spp. Anaplasma phagocytophilum was found to infect 96.1% of cervids, 88.9% of mouflon, and 28.2% of wild boar, whereas Theileria spp. was detected only in cervids (94.6%). Importantly, a high rate of cervids (89%) showed mixed infections with both these microorganisms. In addition to A. phagocytophilum and Theileria spp., Rickettsia helvetica, R. monacensis, unidentified Rickettsia sp., Coxiella burnetii, "Candidatus Neoehrlichia mikurensis", Borrelia burgdorferi (s.l.) and Babesia venatorum were identified in engorged I. ricinus. Furthermore, A. phagocytophilum, Babesia spp. and Theileria spp. were detected in engorged H. concinna. Analysis of 16S rRNA and groEL gene sequences revealed the presence of five and two A. phagocytophilum variants, respectively, among which sequences identified in wild boar showed identity to the sequence of the causative agent of human granulocytic anaplasmosis (HGA). Phylogenetic analysis of Theileria 18S rRNA gene sequences amplified from cervids and engorged I. ricinus ticks segregated jointly with sequences of T. capreoli isolates into a moderately supported monophyletic clade. Conclusions: The findings indicate that free-living ungulates are reservoirs for A. phagocytophilum and Theileria spp. and engorged ixodid ticks attached to ungulates are good sentinels for the presence of agents of public and veterinary concern. Further analyses of the A. phagocytophilum genetic variants and Theileria species and their associations with vector ticks and free-living ungulates are required.Fil: Kazimírová, Mária. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Hamšíková, Zuzana. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Spitalská, Eva. Slovak Academy of Sciences. Institute of Virology. Biomedical Research Center,; EslovaquiaFil: Minichová, Lenka. Slovak Academy of Sciences. Institute of Virology. Biomedical Research Center,; EslovaquiaFil: Mahríková, Lenka. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Caban, Radoslav. Široká ; EslovaquiaFil: Sprong, Hein. National Institute for Public Health and Environment.Laboratory for Zoonoses and Environmental Microbiology; Países BajosFil: Fonville, Manoj. National Institute for Public Health and Environment.Laboratory for Zoonoses and Environmental Microbiology; Países BajosFil: Schnittger, Leonhard. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kocianová, Elena. Slovak Academy of Sciences. Institute of Virology. Biomedical Research Center,; Eslovaqui

    Effects of supplemented isoenergetic diets varying in cereal fiber and protein content on the bile acid metabolic signature and relation to insulin resistance

    Get PDF
    Bile acids (BA) are potent metabolic regulators influenced by diet. We studied effects of isoenergetic increases in the dietary protein and cereal-fiber contents on circulating BA and insulin resistance (IR) in overweight and obese adults. Randomized controlled nutritional intervention (18 weeks) in 72 non-diabetic participants (overweight/obese: 29/43) with at least one further metabolic risk factor. Participants were group-matched and allocated to four isoenergetic supplemented diets: control; high cereal fiber (HCF); high-protein (HP); or moderately increased cereal fiber and protein (MIX). Whole-body IR and insulin-mediated suppression of hepatic endogenous glucose production were measured using euglycaemic–hyperinsulinemic clamps with [6-62H2] glucose infusion. Circulating BA, metabolic biomarkers, and IR were measured at 0, 6, and 18 weeks. Under isoenergetic conditions, HP-intake worsened IR in obese participants after 6 weeks (M-value: 3.77 ± 0.58 vs. 3.07 ± 0.44 mg/kg/min, p = 0.038), with partial improvement back to baseline levels after 18 weeks (3.25 ± 0.45 mg/kg/min, p = 0.089). No deleterious effects of HP-intake on IR were observed in overweight participants. HCF-diet improved IR in overweight participants after 6 weeks (M-value 4.25 ± 0.35 vs. 4.81 ± 0.31 mg/kg/min, p = 0.016), but did not influence IR in obese participants. Control and MIX diets did not influence IR. HP-induced, but not HCF-induced changes in IR strongly correlated with changes of BA profiles. MIX-diet significantly increased most BA at 18 weeks in obese, but not in overweight participants. BA remained unchanged in controls. Pooled BA concentrations correlated with fasting fibroblast growth factor-19 (FGF-19) plasma levels (r = 0.37; p = 0.003). Higher milk protein intake was the only significant dietary predictor for raised total and primary BA in regression analyses (total BA, p = 0.017; primary BA, p = 0.011). Combined increased intake of dietary protein and cereal fibers markedly increased serum BA concentrations in obese, but not in overweight participants. Possible mechanisms explaining this effect may include compensatory increases of the BA pool in the insulin resistant, obese state; or defective BA transport

    iOD907, the first genome-scale metabolic model for the milk yeast Kluyveromyces lactis

    Get PDF
    We describe here the first genome-scale metabolic model of Kluyveromyces lactis, iOD907. It is partially compartmentalized (4 compartments), composed of 1867 reactions and 1476 metabolites. The iOD907 model performed well when assessing the positive growth of K. lactis to Biolog experiments and to an online catalogue of strains that provides information on carbon sources in which K. lactis is able to grow. Chemostat experiments were used to adjust non-growth-associated energy requirements, and the model proved accurate when predicting the biomass, oxygen and carbon dioxide yields. In silico knockouts predicted in vivo phenotypes accurately when compared to published experiments. The iOD907 genome-scale metabolic model complies with the MIRIAM standards for the annotation of enzymes, transporters, metabolites and reactions. Moreover, it contains direct links to KEGG (for enzymes, metabolites and reactions) and to TCDB for transporters, allowing easy comparisons to other models. Furthermore, this model is provided in the well-established SBML format, which means that it can be used in most metabolic engineering platforms, such as OptFlux or Cobra. The model is able to predict the behavior of K. lactis under different environmental conditions and genetic perturbations. Furthermore, it can also be important in the design of minimal media and will allow insights on the milk yeast's metabolism, as well as identifying metabolic engineering targets for the improvement of the production of products of interest by performing simulations and optimizations.The authors thank strategic Project PEst-OE/EQB/LA0023/2013 and project "BioInd - Biotechnology and Bioengineering for improved Industrial and Agro-Food processes, REF. NORTE-07-0124-FEDER-000028" co-funded by the Programa Operacional Regional do Norte (ON.2 - O Novo Norte), QREN, FEDER. The authors would also like to acknowledge Steve Sheridan for proof reading this manuscript

    The global biogeography of tree leaf form and habit

    Get PDF
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17–34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling

    Evenness mediates the global relationship between forest productivity and richness

    Get PDF
    1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale.2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship.3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive.4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions
    corecore