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Abstract

Background: Free-living ungulates are hosts of ixodid ticks and reservoirs of tick-borne microorganisms in central
Europe and many regions around the world. Tissue samples and engorged ticks were obtained from roe deer, red
deer, fallow deer, mouflon, and wild boar hunted in deciduous forests of south-western Slovakia. DNA isolated from
these samples was screened for the presence of tick-borne microorganisms by PCR-based methods.

Results: Ticks were found to infest all examined ungulate species. The principal infesting tick was Ixodes ricinus, identified
on 90.4% of wildlife, and included all developmental stages. Larvae and nymphs of Haemaphysalis concinna were feeding
on 9.6% of wildlife. Two specimens of Dermacentor reticulatus were also identified. Ungulates were positive for
A. phagocytophilum and Theileria spp. Anaplasma phagocytophilum was found to infect 96.1% of cervids, 88.9%
of mouflon, and 28.2% of wild boar, whereas Theileria spp. was detected only in cervids (94.6%). Importantly,
a high rate of cervids (89%) showed mixed infections with both these microorganisms. In addition to A. phagocytophilum
and Theileria spp., Rickettsia helvetica, R. monacensis, unidentified Rickettsia sp., Coxiella burnetii, “Candidatus Neoehrlichia
mikurensis”, Borrelia burgdorferi (s.l.) and Babesia venatorum were identified in engorged I. ricinus. Furthermore, A.
phagocytophilum, Babesia spp. and Theileria spp. were detected in engorged H. concinna. Analysis of 16S rRNA
and groEL gene sequences revealed the presence of five and two A. phagocytophilum variants, respectively,
among which sequences identified in wild boar showed identity to the sequence of the causative agent of
human granulocytic anaplasmosis (HGA). Phylogenetic analysis of Theileria 18S rRNA gene sequences amplified
from cervids and engorged I. ricinus ticks segregated jointly with sequences of T. capreoli isolates into a moderately
supported monophyletic clade.

Conclusions: The findings indicate that free-living ungulates are reservoirs for A. phagocytophilum and Theileria spp.
and engorged ixodid ticks attached to ungulates are good sentinels for the presence of agents of public and
veterinary concern. Further analyses of the A. phagocytophilum genetic variants and Theileria species and their
associations with vector ticks and free-living ungulates are required.
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Background
In the northern hemisphere, the majority of vector-borne
diseases are caused by tick-borne pathogens [1–4]. Ixodes
ricinus is a highly competent vector for a variety of disease
agents in humans as well as in livestock, such as viruses,
bacteria and protozoan parasites [5–7]. Also, the bites of I.
ricinus by themselves can cause meat allergy [8]. Ixodes
ricinus is a generalist tick that infests more than 300 dif-
ferent vertebrate species [9], including birds, lizards, small
rodents, hares, hedgehogs as well as free-living ruminants,
carnivores or wild boar. It has a three-host life-cycle with
larvae feeding predominantly on small mammals or birds,
nymphs feeding on small as well as large mammals, and
adults preferring larger mammals [10]. Ixodes ricinus is
usually associated with deciduous and mixed forests, but
recent studies have shown that its populations can also be
abundant in green periurban and urban areas [7].
Free-living ungulates are essential feeding hosts for I.

ricinus and play a vital role in the propagation of this
species [11–15]. In addition, they are reservoirs of
tick-borne microorganisms some of which may cause
disease in humans and domestic animals [7, 16–18].
Knowledge of the tick-borne pathogen reservoir role of
wildlife is a prerequisite for a thorough understanding of
the epidemiology of tick-borne zoonotic diseases and the
development of effective control measures.
The epidemiology of the obligate intracellular bacterium

Anaplasma phagocytophilum, the causative agent of
tick-borne fever in ruminants and human granulocytic an-
aplasmosis (HGA), is very complex in Europe, with vari-
ous ecotypes involved in different epidemiological cycles
[19, 20]. Presence of diverse A. phagocytophilum genetic
variants has been reported in a wide range of free-living
and domestic animals [21–25]. Among them, cervids have
been suggested as reservoirs for several A. phagocytophi-
lum variants transmitted by I. ricinus. Variants associated
with roe deer (Capreolus capreolus) are probably
non-pathogenic to humans, dogs, horses or domestic ru-
minants, whereas red deer (Cervus elaphus) is likely a res-
ervoir for variants pathogenic to domestic ruminants and
horses [20, 26, 27]. The role of wild boar (Sus scrofa) in
the transmission cycle of A. phagocytophilum is still un-
clear. Recent molecular studies have shown that A. phago-
cytophilum genetic variants infecting wild boars and
humans clustered together [26, 28, 29]. However, the short
duration of infection and, as compared to deer species,
the relatively low number of ticks feeding on them, ques-
tion wild boar as a relevant reservoir host [30].
Wildlife is a potential source of infection with piro-

plasmids Babesia spp. and/or Theileria spp. Zoonotic
species of Babesia, including B. divergens and B. vena-
torum, are transmitted by I. ricinus and have been re-
ported in European cervids [31, 32]. It should be noted,
however, that reports on the occurrence of B. divergens

previous to its exact sequence definition by Malandrin et
al. [33] have to be taken with caution as this species is
highly similar to B. capreoli. Babesia divergens causes
babesiosis in cattle and immunocompromised humans
[32, 34], whereas B. capreoli, prevalent in roe deer, is
non-pathogenic in domestic ruminants [33, 35]. Besides
B. divergens, B. venatorum (formerly Babesia sp. EU1)
has been found to cause disease in humans [36, 37]. Its
presence has been confirmed in cervids in many
European countries [32, 38–42], and recently in cap-
rines [39] and mouflon [42]. Also, the non-zoonotic
B. odocoilei-like taxon, Babesia sp. MO1 and Babesia
sp. CH1, have been detected in cervids [39, 42, 43],
and B. motasi, transmitted by Haemaphysalis spp.
ticks and causing disease in sheep and goat [44], has
been reported in free-living caprines [39].
In Europe, asymptomatic infections caused by piro-

plasmids of the genus Theileria such as T. capreoli iso-
lates Theileria sp. 3185/02 and Theileria BAB1158 and
Theileria spp. isolate Theileria sp. OT3 obtained from
roe deer, red deer, and chamois, and Theileria sp. ZS
TO4 isolated from red deer have been described in sev-
eral free-living cervids and caprines [42, 45–52]. Up to
now, none of these Theileria species have been described
to cause zoonotic disease [32]. Their vectors have not
been confirmed in central Europe, but probably I. ricinus
and/or Haemaphysalis spp. ticks are involved in their
transmission [48–50].
Free-living ruminants may be involved in the epidemi-

ology of Q fever by maintaining Coxiella burnetii,
whereby ticks might also play a role in the circulation of
the agent and its transmission from wildlife to domestic
animals [53–56]. However, the role of free-living ungu-
lates in the epidemiology of C. burnetii may differ be-
tween ecosystems and geographic areas [56].
In contrast, free-living ungulates are likely not reser-

voirs for Rickettsia spp. of the spotted fever group (SFG)
and Borrelia burgdorferi (s.l.), even though the presence
of DNA specific for these bacteria have been sporadically
detected in their tissues [57–60]. It is assumed that due
to complement-mediated killing, the presence of B.
burgdorferi (s.l.) in ticks feeding on cervids and wild
boar is reduced [61–63].
The aims of the present study were to (i) increase the

knowledge on the diversity of tick-borne bacteria and
piroplasmids infecting free-living ungulates, and (ii) in-
vestigate the role of free-living ungulates as carriers of
infected ticks and/or reservoirs of tick-borne pathogens
in Slovakia, central Europe.

Methods
Study area and biological samples
Tissue samples and ticks were obtained from a total of 92
gunshot game animals of five species. Forty-four cervids
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comprised of the three species: roe deer (Capreolus
capreolus; n = 14), red deer (Cervus elaphus; n = 8) and
fallow deer (Dama dama; n = 22). The remaining two
species were mouflon (Ovis musimon; n = 9) and wild
boar (Sus scrofa; n = 39). Animals were shot by hunters
and samples were kindly provided during the legal hunt-
ing seasons of 2011–2014 in hunting districts located in
deciduous forests of the Small Carpathian Mountains
(southwestern Slovakia) (Additional file 1: Figure S1). The
mountains are, in part, densely forested, with average an-
nual temperatures of 7–9 °C and an annual rainfall of
650–690 mm. Sessile oak (Quercus petraea) and European
hornbeam (Carpinus betulus) dominate at lower, whereas
European beech (Fagus sylvatica) dominate at higher alti-
tudes [64]. The highest mountain peak reaches an eleva-
tion of 768 metres above sea level (masl).
The biological samples contained spleen from all

hunted specimens, blood, lower parts of legs with skin
and hoofs, and engorged and/or unattached ticks. Tick
larvae and nymphs were predominantly collected from
lower parts of legs and hoofs of cervids. Engorged
nymphs and adults attached to other body parts were
collected only from three fallow deer individuals whose
whole skins were available. After sampling, tissues and
ticks were preserved in 70% ethanol. Information on sex
and age could not be obtained for all hunted animals
and was therefore not considered in the subsequent ana-
lyses. The species, developmental stage, and gender were
identified for each tick under a stereomicroscope ac-
cording to Siuda [65].

DNA isolation
Genomic DNA was isolated from subsamples of spleen,
blood, and from a randomly selected collection of ticks
including I. ricinus larvae that have been sampled in
pools, and I. ricinus nymphs and adults and Haemaphysalis
concinna larvae and nymphs that have all been sampled in-
dividually. Whenever available, at least five specimens of
each tick species and developmental stage were used to iso-
late genomic DNA by applying the Macherey-Nagel
NucleoSpin® Tissue kit (Düren, Germany) following the in-
structions of the manufacturer. Quantity and quality of the
isolated DNA were measured with a Nanodrop 2000c
spectrophotometer and samples were stored at -20 °C
for further analyses.

PCR detection of microorganisms
Samples were screened for the presence of DNA specific
for the tested microorganisms by using polymerase chain
reaction (PCR)-based assays. A real-time PCR targeting
a 77-bp long fragment of the msp2 gene of A. phagocyto-
philum was performed according to Courtney et al. [66]
as described in Svitálková et al. [67]. To identify A.
phagocytophilum variants, two positive samples from

each ungulate species and 16 randomly selected DNA
samples of engorged I. ricinus larvae were further ana-
lysed by a nested PCR and quantitative real-time PCR
(qPCR), respectively, with primers targeting a 546-bp
fragment of the 16S rRNA gene [68, 69] and a 530-bp
fragment of the groEL gene [70]. A 99-bp fragment of
the “Candidatus Neoehrlichia mikurensis” groEL gene
was amplified with a qPCR [71–73]. A PCR targeting the
com1 gene encoding a 27-kDa outer membrane-associated
immunoreactive protein was applied for the detection of C.
burnetii [74]. Rickettsia spp. were detected by amplifying a
381-bp fragment of the gltA gene using genus-specific
primers [75, 76]. The presence of B. burgdorferi (s.l.) DNA
was detected by amplification of the 5S-23S (rrfA-rrlB)
intergenic spacer and identification of Borrelia genospecies
was done using a restriction fragment length polymorphism
(RFLP) assay [77]. Amplification of a 450-bp region of the
18S rRNA gene of Babesia/Theileria was carried out by
PCR following the protocols of Casati et al. [78] and Ham-
šíková et al. [79]. A duplex qPCR targeting a 62-bp long
fragment of the 18S rRNA gene [80] and a 104-bp fragment
of an internal transcribed spacer (ITS) region was per-
formed for the detection of Babesia spp.
All primers and probes used in the PCR reactions and the

respective references are listed in Additional file 2: Table S1.

Sequence analysis
Amplicons derived from randomly selected samples
positive for Rickettsia and Babesia/Theileria and those
for the partial 16S rRNA and groEL genes of A. phagocy-
tophilum were purified and analysed by sequencing
using forward and reverse PCR primers (Macrogen,
Amsterdam, Netherland). Nucleotide sequences were
manually edited using the MEGA6 software [81]. Deter-
mined sequences of A. phagocytophilum, Babesia spp.
and Theileria spp. were deposited in the GenBank data-
base (Additional file 2: Tables S2, S3).

Phylogenetic analysis
For the phylogenetic analysis of Babesia parasite se-
quences, a multiple alignment of determined and related
18S rRNA gene sequences available on GenBank using
ClustalW was done for piroplasmids pertaining to
Babesia (sensu stricto) (Clade VI as defined in [31]). The
alignment length comprised of 459 bp and consisted of
39 sequences including T. annulata as outgroup. Gaps
were eliminated to result in a final alignment of 403 po-
sitions. The evolutionary distance was estimated using
the K2 + G model with G = 0.36 to generate a
neighbour-joining tree [82, 83]. For the phylogenetic
analysis of Theileria parasite sequences, a multiple align-
ment of determined and related 18S rRNA gene se-
quences available on GenBank using ClustalW was done
for piroplasmids pertaining to Theileria (sensu stricto)
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(Clade V as defined in [31]) infecting large ruminants.
The alignment length comprised of 464 bp and consisted
of 39 sequences including T. equi as outgroup. Gaps
were eliminated to result in a final alignment of 443 po-
sitions. The K2 + G model with G = 0.66 was used to
generate a neighbour-joining tree [82, 83]. For alignment
and phylogenetic analysis, the MEGA6 software was
used [81].
Anaplasma phagocytophilum groEL gene sequences

were aligned using MUSCLE. For phylogenetic analysis,
55 sequences were used: 12 from this study (see
Additional file 2: Table S2), 42 from different European
sources available on GenBank, and Anaplasma margin-
ale (GenBank: AF165812) as the outgroup. The evolu-
tionary history was inferred by using the Maximum
Likelihood method based on the Tamura 3-parameter
model [84]. Positions containing gaps and missing data
were eliminated, and there were 464 positions in the
final dataset. Alignment and evolutionary analyses were
conducted in MEGA X [85].

Statistical analysis
Infection rates for pooled samples of I. ricinus larvae
were analysed by the maximum likelihood estimation
(MLE) method according to Biggerstaff et al. [86].
Chi-square test was used to analyse differences in A.
phagocytophilum and Theileria spp. infection rates in
game species, in I. ricinus feeding on cervids, and in tick
developmental stages. Furthermore, this test was applied
to evaluate differences in single and co-infection rates
between developmental stages of I. ricinus and between
ticks originating from different cervid hosts. Results on
the prevalence of A. phagocytophilum and Theileria spp.
in I. ricinus attached to cervids were used to calculate
the probability of co-infections with the two microor-
ganisms by Chi-square test. P < 0.05 was considered sig-
nificant in all statistical analyses. Analyses were
performed by using PAST Version 3.19. [87].

Results
Infection rates in ungulates
Theileria spp. were found to infect exclusively cervids,
whereas A. phagocytophilum, besides cervids, also in-
fected mouflon and wild boar (Table 1). Infections with
other tick-borne microorganisms were not detected in
any of the examined animals. Infection rates with A.
phagocytophilum significantly differed when cervids,
mouflon, and wild boar were compared (Table 1), but no
significant difference was found between cervids and
mouflon (χ2 = 1.090; P = 0.780). The total infection rates
with Theileria spp. did not significantly differ between
cervid species; however, spleen of red deer was signifi-
cantly less infected than in roe deer and fallow deer
(Table 1). Mixed infections with A. phagocytophilum and

Theileria spp. were detected in 89.8% of cervids (average
co-infection rate for all species), but the differences in
co-infection rates between individual cervid species were
not significant (Table 1).

Ticks infesting ungulates and their infection with tick-borne
microorganisms
In total, 2660 I. ricinus (2106 larvae, 413 nymphs, 118
females and 23 males), 284 H. concinna (241 larvae and
43 nymphs) and 2 Dermacentor reticulatus (1 nymph
and 1 male) were collected from 42.4% (39/92) of the ex-
amined animals. All studied ungulate species harboured
ticks: red deer (62.5%), roe deer (71.4%), fallow deer
(77.3%), mouflon (55.5%), and wild boar (5.1%) (Table 2).
Tick infestation was observed in roe deer, red deer, fal-
low deer and mouflon in May and from July to December.
No ticks were collected in February, April, and June when
only samples from wild boars were available. The majority
of wild boars were tick-free, except for two individuals,
one carrying an I. ricinus nymph and the other a D. reticu-
latus male. The highest number of ticks was found on a
fallow deer shot in August 2014 in the district Rača,
Bratislava and included 800 I. ricinus (777 larvae and 23
nymphs) and 215 H. concinna (182 larvae and 33
nymphs).
A selection of ticks (22.9%; 674/2946) (I. ricinus: 371

larvae in 74 pools, 177 nymphs, 72 females, 21 males; H.
concinna: 19 larvae, 14 nymphs) were analysed for the
presence of tick-borne microorganisms. In total, 82.8%
of the samples were infected with at least one micro-
organism. The diversity of microorganisms in engorged
ticks was higher than in the ungulate hosts (Table 3). In
addition to A. phagocytophilum and Theileria spp.,
Rickettsia spp., C. burnetii, B. venatorum, “Ca. N. mikur-
ensis” and B. burgdorferi (s.l.) were detected in I. ricinus
ticks. Haemaphysalis concinna were infected with A.
phagocytophilum, Babesia spp. and Theileria spp.
Anaplasma phagocytophilum was detected in all devel-

opmental stages of I. ricinus collected from cervids and
mouflon, and in a few engorged H. concinna larvae from
roe deer and fallow deer. Prevalence of infection in I.
ricinus originating from different hosts varied (Table 3),
but the differences were not significant for any of the
tick developmental stages (ticks from mouflon were not
included in the analyses). The overall prevalence in lar-
vae was 27.7% MLE, in nymphs and adults it was 59.3%
and 90.3%, respectively, but the differences between the
tick stages were not significant. Larvae infected with A.
phagocytophilum were collected only from hosts that
tested positive for A. phagocytophilum (4 roe deer, 3 red
deer, 11 fallow deer and 4 mouflon). Similarly, infected
nymphs originated only from infected hosts (5 roe deer,
4 red deer, 9 fallow deer and 1 mouflon). Infected tick
females fed on infected animals (1 roe deer, 4 red deer,
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14 fallow deer and 3 mouflon), but were also collected
from an uninfected fallow deer. All A. phagocytophi-
lum-positive H. concinna larvae fed on infected cervids.
Rickettsia spp. were detected exclusively in all develop-

mental stages of I. ricinus (Table 3). Total prevalence

was 6.8% (MLE), 7.3% and 11.8% in larvae, nymphs and
adults, respectively. Rickettsia-infected ticks were ob-
tained from five roe deer, one red deer, 11 fallow deer
and one mouflon. In 27 of 46 tick samples, the Rickettsia
species could be identified either as R. helvetica (25 sam-
ples) or R. monacensis (2 samples), while from the
remaining 19 samples the Rickettsia species was not de-
termined to species level.
Coxiella burnetii was identified in four I. ricinus

nymphs feeding on a roe deer (shot in September 2013),
in a pool of larvae and one female from a fallow deer,
and in one female from a mouflon (both shot in November
2013) (Table 3).
“Candidatus N. mikurensis” was detected in an

engorged I. ricinus nymph and three females collected
from roe deer and fallow deer (Table 3).
Borrelia valaisiana was detected in a pool of I. rici-

nus larvae attached to a roe deer and in a nymph
and a male from fallow deer. Borrelia afzelii was de-
tected in a nymph from roe deer and Borrelia garinii
in two nymphs, one from roe and one from fallow
deer (Table 3).
Babesia venatorum (Fig. 1) was detected in three pools

of I. ricinus larvae which each had been collected from
different roe deer individuals, and in a tick female from
a fallow deer. Haemaphysalis concinna larvae that fed
on a roe deer and a mouflon each harboured another
Babesia isolate identified as B. motasi (Fig. 1, Table 3).

Table 2 Numbers of collected ticks and prevalence of infestation
of free-living ungulates in the Small Carpathian Mountains
(southwestern Slovakia) (2011–2014)

Infested/examined
(prevalence in %)

Tick species and no. of ticks

Capreolus capreolus 10/14 (71.4) Ir: 618 L, 68 N, 3 F, 1 M

Hc: 57 L, 9 N

Cervus elaphus 5/8 (62.5) Ir: 55 L, 30 N, 8 F, 3 M

Dama dama 17/22 (77.3) Ir: 1422 L, 313 N, 103 F, 18 M

Hc: 183 L, 34 N

Dr: 1 L

Ovis musimon 5/9 (55.5) Ir: 11 L, 1 N, 4 F, 1 M

Hc: 1 L

Sus scrofa 2/39 (5.1) Ir: 1 N

Dr: 1 M

Total 39/92 (42.4) Ir: 2106 L, 413 N, 118 F, 23 M

Hc: 241 L, 43 N

Dr: 1L, 1 M

Abbreviations: Ir, Ixodes ricinus; Hc, Haemaphysalis concinna; Dr, Dermacentor
reticulatus; L, larva; N, nymph; F, female; M, male

Table 1 Molecular detection of tick-borne microorganisms in spleen and blood of free-living ungulates. Values represent numbers
of positive/examined samples and infection rates (%)

Capreolus capreolus Cervus elaphus Dama dama Ovis musimon Sus scrofa χ2-value P-valuea

Total infection (spleen and/or blood)

A. phagocytophilum 13/14 (92.9) 8/8 (100) 21/22 (95.4) 8/9 (88.9) 11/39 (28.2) 44.244 <0.001

Theileria sp. 13/14 (92.9) 8/8 (100) 20/22 (90.9) 0.767 ns

Mixed infection 11/14 (78.6) 8/8 (100) 20/22 (90.9) 2.546 ns

Spleen

A. phagocytophilum 12/14 (85.7) 8/8 (100) 20/22 (90.9) 6/9 (66.7) 10/39 (25.6) 37.553 <0.001

Theileria sp. 12/14 (85.7) 3/8 (37.5) 18/22 (81.8) 7.403 <0.05

Mixed infection 11/14 (78.6) 3/8 (37.5) 17/22 (77.3) 5.108 ns

Bloodb

A. phagocytophilum 6/12 (50.0) 8/8 (100) 16/17 (94.1) 4/7 (57.1) 6/31 (19.3) 21.836 <0.001

Theileria sp. 8/12 (66.7) 8/8 (100) 15/17 (88.2) 4.384 ns

Mixed infection 6/12 (50) 8/8 (100) 14/17 (82.3) 7.281 <0.05

Spleen and bloodb

A. phagocytophilum 6/12 (50.0) 8/8 (100) 16/17 (94.1) 3/7 (42.8) 5/31 (16.1) 35.597 <0.001

Theileria sp. 8/12 (66.7) 3/8 (37.5) 15/17 (88.2) 6.813 <0.05

Mixed infection 4/12 (33.3) 3/8 (37.5) 11/17 (64.7) 3.279 ns

Abbreviation: ns, not significant
aPrevalence of A. phagocytopilum was compared between all examined ungulate species whereas the prevalence of Theileria sp. was compared between the three
cervid species
bBlood was not available from all animals
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Table 3 Diversity of tick-borne microorganisms in Ixodes ricinus and Haemaphysalis concinna ticks infesting free-living ungulates.
Values represent numbers of positive/examined tick samples and prevalence (in %)

Tick/Host Capreolus capreolus Cervus elaphus Dama dama Ovis musimon Sus scrofa

(i) Ixodes ricinus

Larvae

Anaplasma phagocytophilum 25/31 (27.7)a; 4b 5/6 (23.0)a; 3b 24/32 (22.0)a; 11b 5/5 (57.1)a; 4b

Rickettsia sp. 14/31 (11.6)a 1/32 (0.6)a

Rickettsia helvetica 1/31 (0.7)a 1/6 (3.1)a 3/32 (1.7)a

Rickettsia monacensis 2/3 (21.2)a

Coxiella burnetii 1/32 (0.6)a

Babesia venatorum 3/31 (2.1)a

Theileria sp. 19/31 (17.7)a; 7b 1/6 (3.1)a; 1b 11/32 (8.3)a; 8b

Borrelia valaisiana 1/31 (0.75)a

No. of animals infested with larvae 7 3 13 4 0

Nymphs

Anaplasma phagocytophilum 30/59 (50.9); 5b 12/15 (80.0); 4b 62/101 (61.4); 9b 1/1 (100); 1b

Rickettsia sp. 2/59 (3.4) 1/15 (6.7)

Rickettsia helvetica 2/59 (3.4) 8/101 (7.9)

Coxiella burnetii 4/59 (6.8)

CNM 1/59 (1.7)

Theileria sp. 17/59 (28.8); 7b 9/15 (60.0); 1b 22/101 (21.8); 10b

Borrelia valaisiana 1/101 (1.0)

Borrelia afzelii 1/59 (1.7)

Borrelia garinii 1/59 (1.7) 1/101 (1.0)

No. of animals infested with nymphs 9 4 12 1 1

Females

Anaplasma phagocytophilum 2/3 (66.7); 1b 7/7 (100); 4b 54/58 (93.1); 14b 4/4 (100); 3b

Rickettsia helvetica 8/58 (13.8) 1/4 (25.0)

Coxiella burnetii 1/58 (1.7) 1/4 (25.0)

CNM 2/3 (66.7) 1/58 (1.7)

Babesia venatorum 1/58 (1.7)

Theileria sp. 2/3 (66.7); 2b 3/7 (42.9); 3b 39/58 (67.2); 11b

No. of animals infested with females 2 4 15 3 0

Males

Anaplasma phagocytophilum 1/1 (100); 1b 2/3 (66.7); 1b 13/16 (81.2); 7b 1/1 (100); 1b

Rickettsia sp. 1/1 (100)

Rickettsia helvetica 1/16 (6.2)

Theileria sp. 0/1 (0); 0 1/3 (33.3); 1b 8/16 (50.0); 4b

Borrelia valaisiana 1/16 (6.2)

No. of animals infested with males 1 1 8 1 0

(ii) Haemaphysalis concinna

Larvae

Anaplasma phagocytophilum 2/12 (16.7); 2b 2/6 (33.3); 1b 1/1 (100); 1b

Babesia sp. 2/12 (16.7) 1/1 (100)

No. of animals infested with larvae 5 0 2 1 0
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Theileria spp. were present in all developmental stages
of I. ricinus and in H. concinna nymphs (Table 3). Ticks
that tested positive for Theileria spp. fed exclusively on
Theileria-infected cervids. Total prevalence was 12.1%
(MLE), 27.1%, and 58.1% in I. ricinus larvae, nymphs,
and adults, respectively. Differences in the prevalence of
infected ticks from the three cervid species were signifi-
cant for larvae (χ2 = 6.731, P = 0.034) and nymphs (χ2 =
9.669, P = 0.008). Infected larvae were collected from
seven roe deer, one red deer and eight fallow deer. In-
fected nymphs originated from seven roe deer, one red
deer and ten fallow deer. Infected females were collected
from two roe deer, three red deer and 11 fallow deer.
Theileria-positive H. concinna nymphs fed on two in-
fected roe deer individuals.

Mixed infections in ticks
Mixed infections with two to four different microorgan-
isms were found in 38.4% of I. ricinus samples (48.6%
larval pools, 23.7% nymphs and 58.1% adults). The most
common mixed infections were with A. phagocytophilum
(31.1% larval pools, 17.5% nymphs and 52.7% adults),
whereby co-infections of A. phagocytophilum and
Theileria spp. prevailed (Table 4). They were detected in
16.2% larval pools, 15.2% nymphs and 38.7% adults, and
occurred in ticks collected from all cervid species. Mixed
infections with four microorganisms, namely A.
phagocytophilum, Theileria, Rickettsia and Borrelia
occurred exclusively in ticks attached to roe deer.
Proportions of I. ricinus infected with A. phagocytophi-

lum alone and co-infected with Theileria spp. depended
on the tick stage. Significant differences were revealed
between nymphs and adults (χ2 = 14.759, P < 0.001), but
not between larvae and nymphs or adults. Proportions
of single and mixed infections with A. phagocytophilum
depended on the cervid host in larvae and nymphs, but
not in adults (larval pools: χ2 = 7.755, P = 0.021;
nymphs: χ2 = 6.127; P = 0.045). Overall proportions of
uninfected I. ricinus and those infected with single and
multiple pathogens did not depend on the cervid host
(χ2 = 5.568, P = 0.234), but depended on the tick devel-
opmental stage (χ2 = 47.321, P < 0.001). The proportions
differed significantly between larvae and nymphs (χ2 =
18.698, P < 0.001) and between nymphs and adults

(χ2 = 40.468, P < 0.001), but not between larvae and adults
(χ2 = 3.456, P = 0.178).
In H. concinna, mixed infection with A. phagocytophilum

and Babesia sp. was detected in a single larva collected
from an A. phagocytophilum-infected mouflon.

Anaplasma phagocytophilum variants
By analysing the variation of the 16S rRNA gene of A.
phagocytophilum from ungulates, five variants showed
identity with corresponding sequences deposited in the
GenBank database. Four of these variants were desig-
nated according to Schorn et al. [88] and Silaghi et al.
[89] as “Y”, “S”, “W”, and “B” (Table 5). Importantly,
variant “B” from wild boar was found to be identical
with the sequence of the HGA agent (AY886761). A fifth
sequence obtained from mouflon (MF061301) was not
identical with any of the abovementioned variants and
was designated as variant “Q”. It showed 100% identity
with database entries of A. phagocytophilum isolated
from the spleen of sika deer (KU705189), red deer
(KU705138), and mouflon (KU705120) in Germany as
well as from blood and spleen of red deer in the Czech
Republic (EU839849) and in Slovenia (AF481852), re-
spectively. Out of 16 selected engorged I. ricinus larvae,
amplification of 16S rRNA gene was successful for eight
ticks feeding on roe and fallow deer. Only in a single
case, the 16S rRNA gene sequence variant “S” identified
in a larva corresponded with that of its fallow deer host,
whereas in another larva of the same fallow deer, the
variant “W” was identified. In three larvae sampled from
three other fallow deer, the variant “S” was identified in
one and the variant “B” in the remaining two larvae. The
variant “X” was found in three larvae from roe deer.
Analysis of A. phagocytophilum groEL gene sequences

derived from this study (see Additional file 2: Table S2)
revealed the presence of two groEL gene variants in un-
gulates that are designated as ecotype I and II according
to the classification by Jahfari et al. [20]. The variant
identified in wild boar showed 100% identity to the
HGA agent from human blood from Slovenia (AF033101).
Amplification of the partial groEL gene was only success-
ful for two I. ricinus larvae from fallow deer (MG773209
and MG773210) that were not identical with the sequence
identified in the host. In the phylogenetic tree constructed

Table 3 Diversity of tick-borne microorganisms in Ixodes ricinus and Haemaphysalis concinna ticks infesting free-living ungulates.
Values represent numbers of positive/examined tick samples and prevalence (in %) (Continued)

Tick/Host Capreolus capreolus Cervus elaphus Dama dama Ovis musimon Sus scrofa

Nymphs

Theileria sp. 5/14 (35.7); 2b

No. of animals infested with nymphs 2 0 2 0 0

Abbreviation: CNM, “Candidatus Neoehrlichia mikurensis”
aMLE, maximum likelihood estimation of infection prevalence
bNumbers of A. phagocytophilum- or Theileria sp.-positive ungulates from which infected ticks were collected
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by using the 12 obtained sequences and the 42 groEL partial
gene sequences retrieved from GenBank, the two sequences
from roe deer formed a cluster together with sequences from
roe deer from Germany, France, Slovenia and questing I. rici-
nus ticks from Slovenia and eastern Slovakia. The sequences
from the other ungulates and engorged I. ricinus ticks

clustered together with sequences from other sources, includ-
ing that from a human patient (Additional file 3: Figure S2).

Analysis of piroplasmid sequences
A phylogenetic tree inferred from aligned Babesia 18S
rRNA gene sequences showed the identity of a Babesia

Fig. 1 Neighbour-joining tree of hypervariable 18S rRNA gene sequences of Babesia parasites. The sequence of the isolates from Slovakia is labelled
with isolate designation, tick and/or vertebrate host, geographical origin, and the number of identical sequences (in parentheses). The bootstrap values
based on 1000 replicates are displayed next to the branches. The tree is rooted using Theileria annulata as the outgroup. Clades displaying a bootstrap
value of ≥ 85 are considered highly significant. The evolutionary distance is shown in the units of the number of base substitutions per site
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Table 4 Single and mixed infections in Ixodes ricinus ticks infesting free-living ungulates

Infection (Pathogens) Tick
stage

No. of
samples (%)a

Host

Roe deer Red deer Fallow deer Mouflon Wild boar

Uninfected

L 7 pools × ×

N 49 × × × ×

M 3 × ×

Subtotal 59 (17.1)

Single infections

Ap L 26 pools × × × ×

N 65 × × × ×

F 23 × × ×

M 8

Subtotal 122 (35.5)

Th L 5 pools × ×

N 15 × × ×

F 5 × ×

Subtotal 25 (7.3)

Rh N 3 (0.9) × ×

Ba N 1 (0.3) ×

Bval N 1 (0.3) ×

Bgar N 1 (0.3) ×

Mixed infections

Ap + Th L 12 pools × ×

N 27 × × ×

F 29 × ×

M 7 × ×

Subtotal 75 (21.8)

Ap + Bv L 1 pool ×

F 1 ×

Subtotal 2 (0.6)

Ap + CNM F 1 (0.3) ×

Ap + Cb N 4 ×

F 1 ×

subtotal 5 (1.4)

Ap + Rsp L 6 pools ×

N 1 ×

M 1 ×

Subtotal 8 (2.3)

Ap + Rh N 4 ×

F 1 ×

Subtotal 5 (1.4)

Ap + Rm L 1 pool (0.3) ×

Th + Bv L 1 pool (0.3) ×

Th + CNM N 1 (0.3) ×

Th + Rh L 2 pools × ×
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isolate identified in a roe deer-attached H. concinna tick
with B. motasi, with the highly significant bootstrap sup-
port of 98 (Fig. 1). Four other sequences, three amplified
from I. ricinus ticks that had been attached to roe deer
and one amplified from an I. ricinus attached to a fallow
deer, were placed with the highly significant bootstrap
support of 95 into the B. venatorum clade. Importantly,
all four sequences were identical with the sequence
FJ215873 of B. venatorum isolated from a human patient
that has been originally isolated and described as
Babesia sp. EU1 [36].
To assess the species identity of Theileria isolates, the

Theileria 18S rRNA gene sequences were compared with
corresponding sequences available on GenBank by
phylogenetic analysis. In the inferred tree, Theileria sp. 1
and 2 sequences segregated jointly with Theileria
capreoli isolated from red deer in Spain, and two other
Theileria spp. isolated from red and roe deer, respect-
ively, into a single clade. Interestingly, Theileria sp. 1
isolates were only found in red deer whereas Theileria
sp. 2 isolates were only present in roe deer suggesting
that these are two Theileria species with different host
specificity (Additional file 4: Figure S3). Analysed 18S
rRNA gene sequences of Theileria and Babesia species
are listed with their GenBank accession numbers in
Additional file 1: Table S3.

Discussion
Changes in land use and urbanisation increase the fre-
quency of encounters between wildlife and domestic ani-
mals and humans that, in turn, increase the risk of
contracting zoonotic diseases [18, 90–92]. Slovakia is
covered, in part, by forests [64] with abundant popula-
tions of wildlife, including large game animals [93]. The
present study explored associations of free-living un-
gulates with ticks and tick-borne microorganisms in
deciduous forests of the Small Carpathian Mountains,
comprising recreational areas (Bratislava Forest Park)
and hunting districts.

Infestation of ungulates with ticks
Free-living ungulates are important for maintenance of
tick populations [11, 94] and serve as a reservoir and/or
spillover hosts for tick-borne microorganisms [32, 95].
With respect to their wide home range, they can trans-
port ticks of all developmental stages over long distances
and thus contribute to the natural maintenance of trans-
mission cycles of tick-borne agents and their dispersal
[11, 16, 96, 97]. Ixodes ricinus dominated among ticks
collected from the hunted ungulates in our study, which
is in line with the occurrence and abundance of questing
ticks in the study area [98]. Contrary to the expected, ex-
clusively larvae and nymphs but no adults of H. concinna

Table 4 Single and mixed infections in Ixodes ricinus ticks infesting free-living ungulates (Continued)

Infection (Pathogens) Tick
stage

No. of
samples (%)a

Host

Roe deer Red deer Fallow deer Mouflon Wild boar

N 1 ×

Subtotal 3 (0.9)

Ap + Th + CNM F 2 × ×

AP + Bv + Rsp L 1 pool ×

Ap + Th + Rsp L 6 pools ×

N 2 × ×

Subtotal 8 (2.3)

Ap + Th + Rh L 3 pools ×

N 1 ×

F 8 ×

M 1 ×

Subtotal 13 (3.8)

Ap + Th + Rm L 1 pool (0.3) ×

Ap + Th + Cb F 1 (0.3) ×

Ap + Rsp + Cb L 1 pool (0.3) ×

Ap + Th + Bval M 1 (0.3) ×

Ap + Th + Rsp + Bval L 1 pool (0.3) ×

Ap + Th + Rh + Bgar N 1 (0.3) ×

Abbreviations: ×, presence; Ap, Anaplasma phagocytophilum; Th, Theileria spp.; Bv, Babesia venatorum; CNM, "Candidatus Neoehrlichia mikurensis"; Rsp, Rickettsia sp.;
Rh, Rickettsia helvetica; Rm, Rickettsia monacensis; Ba, Borrelia afzelii; Bgar, Borrelia garinii; Bval, Borrelia valaisiana; Cb, Coxiella burnetii; L, larva; N, nymph; F, female; M, male
aInfection prevalence (in %), the total number of analysed samples was 344 (74 pools of larvae, 177 nymphs, 72 females, 21 males)
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were found, though similarly as for I. ricinus, small mam-
mals and ground-dwelling passerine birds are considered
as the main hosts of their subadult stages and ungulates
are hosts of adults [99, 100]. Tick numbers, the ratio be-
tween the abundance of developmental stages and data on
seasonality of tick infestation were biased in our study be-
cause in the majority of cases only small portions of the
skin restricted to a few body parts were provided and
could be examined. In addition to legs and hoofs, whole
skins were available only from a few fallow deer individ-
uals from which we were able to gather relatively high
numbers of ticks compared to the other game species.
The majority of engorged and semi-engorged adult and
subadult ticks found on the whole skin of fallow deer were
attached to groins, axillae, and the belly, which is in con-
trast to the attachment patterns of tick developmental
stages reported for roe and red deer [13, 15]. Nevertheless,
our results support previous findings on the role of
cervids and mouflon as hosts and vehicles for I. ricinus
[13, 15, 58, 63, 94, 96] and the individual variation of tick
burdens [11]. In contrast to reports from the Netherlands
[63], but in line with findings from Poland [58], the
infestation rate of wild boars was very low in our
study (5.1% - only a single crawling I. ricinus nymph
and one D. reticulatus male were found on their legs).

We assume that the epidermis in this part of the wild
boar’s body is too hard and the fur too thick to provide
places favourable for tick attachment. Moreover, wild
boars have been reported to be mainly hosts of Dermacentor
marginatus [101], a species that has not been recorded in
the study area [98], whereas D. reticulatus could be found
only sporadically [67, personal observations].

Anaplasma phagocytopilum in ungulates and engorged
ticks
All examined game species were infected with A. phago-
cytophilum. The infection rates were high: 96.1% in cer-
vids; 88.9% in mouflon; and 28.2% in wild boar. The
presence of this bacterium in game has frequently been
reported from different regions of Europe [19, 95], with
varying prevalences depending on the host species, ex-
amined tissue, site, but also on the sensitivity of the de-
tection method used. The infection rates of 100% in red
deer, 95.4% in fallow deer, and 92.9% in roe deer esti-
mated from our study are higher than values previously
reported from Slovakia: red deer 17.5–53.1% [24, 57, 102];
fallow deer 66.7% [24], and roe deer 50–77% [24, 57, 102, 103].
The infection rates determined in this study are in the
upper range of those confirmed by PCR in cervids from
other countries of mainland Europe, where the values

Table 5 16S rRNA and groEL gene sequence variants of A. phagocytophilum in free-living ungulates and engorged ticks

Species/ Isolate code Sex / Age Variant 16S rRNAa Variant groElb

Capreolus capreolus / 18SPZc ♂ /? Y II

Capreolus capreolus / 55SPZ ♂ / 1 year Y II

Cervus elaphus / 19SPZ ♂ / 3 years S I

Cervus elaphus / 21SPZ ♂ / juvenile W I

Dama dama / 25SPZ ♀ / 2 years S I

Dama dama / 51SPZ ♀ / juvenile S I

Ovis musimon / 10SPZ ♂ /? Qe I

Ovis musimon / 63SPZ ♂ / 3 years W I

Sus scrofa / 13SPZ ♂ /? B I

Sus scrofa / 43SPZ ♀ /? B I

I. ricinus larva from C. capreolus / 190KPZd X na

I. ricinus larva from C. capreolus / 193KPZ X na

I. ricinus larva from C. capreolus / 236KPZ X na

I. ricinus larva from D. dama / 129KPZ S I

I. ricinus larva from D. dama / 158KPZ W I

I. ricinus larva from D. dama / 180KPZ S na

I. ricinus larva from D. dama / 268KPZ B na

I. ricinus larva from D. dama / 382KPZ B na
aNomenclature according to Schorn et al. [88] and Silaghi et al. [89]
bNomenclature according to Jahfari et al. [20]
cSPZ, spleen from game
dKPZ, ticks from game
eThe sequence did not match with the variants described in Schorn et al. [88] or Silaghi et al. [89] and was submitted to GenBank (accession number MF061301);
na, not amplified
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in red deer ranged between 1.5–86% [89, 104–114], in
fallow deer between 1.5–72.5% [42, 105, 106, 108, 110,
112, 115, 116] and in roe deer between 9.6–98.9% [38, 42,
89, 105–113, 117–120]. The 88.9% infection rate in
mouflon is higher than the values previously reported from
Slovakia [57] and other European countries, where the
prevalences ranged from 4% to 74.4% [42, 106, 110, 111].
The lower infection rate in wild boar compared to that esti-
mated in cervids and mouflon supports former findings
from Slovakia (0–16.7%) [24, 57, 112, 121] as well as
from other sites in central and western Europe (0–
14.3%) [28, 58, 105, 106, 110, 122–127]. However, it
is necessary to note that, in addition to geographical
location and habitat, the reported variations of preva-
lence could be due to the application of molecular
detection methods of different sensitivity.
Ixodes ricinus is considered to represent the common

vector of A. phagocytophilum in Europe [8] and was the
most numerous tick species collected from cervids in
our study, with an average prevalence of 27.2% MLE in
larvae, 58.3% in nymphs and 94.3% in adults. The bac-
terial DNA was previously detected in questing I. ricinus
nymphs and adults from the Small Carpathian forests
[67]. The high prevalence in both cervids and attached I.
ricinus ticks suggests that cervids may serve as reservoir
hosts of A. phagocytophilum and are a source of infec-
tion for vector ticks in the studied region. However, the
number of studies in which engorged I. ricinus from cer-
vids were examined for infection with A. phagocytophi-
lum along with their hosts is limited. For example, no A.
phagocytophilum was detected in I. ricinus collected
from roe deer in Slovakia and Poland [112, 118], but in
other sites in Poland, 12.5% and 9% of ticks from roe
deer and red deer, respectively, were found to be in-
fected [58]. For engorged ticks from cervids in Italy, a
31.2% prevalence [113] or 29.9% positive pools [128]
were found, but no information on the tick developmen-
tal stage was given. In another study from Italy, a preva-
lence of 11% and 5.4% was detected for nymphs/adults
and larvae, respectively [129]. The prevalence in adult
ticks feeding on cervids in Italy (7.3%) [116] and Poland
(22.7%) [108] was lower than in our study, whereas it
was comparable with the 86.1% prevalence reported
from a site in Germany, where the infection rate of roe
deer was as high as 98.7% [38]. Anaplasma phagocyto-
philum was also detected in engorged H. concinna larvae
and nymphs feeding on infected roe deer and fallow
deer. However, questing H. concinna from the study
area were not found to be infected [67] suggesting
that this species is not a competent vector of the bac-
terium and that the bacterial DNA originated from
the ingested host blood.
Based on specific genetic markers, the presence of a

wide variety of A. phagocytophilum variants associated

with particular groups of hosts was found to circulate in
wildlife and ticks in Europe [19, 95, 130, 131]. Cervids
are suggested to be the main reservoir hosts, whereby
roe deer probably maintain specific strains that are not
pathogenic for humans or domestic livestock while red
deer could be reservoirs for strains associated with dis-
ease in domestic ruminants [26, 104, 106]. According to
recent findings, however, roe deer can be co-infected
with two to three distinct genetic variants, including
those associated with domestic ruminants [132]. Human
pathogenic A. phagocytophilum strains have been de-
tected in wild boars suggesting their potential reservoir
role for the HGA agent [28, 122, 123]. Four ecotypes of
A. phagocytophilum that differ in host ranges and zoo-
notic potential have been identified based on groEL gene
sequences [20], whereby ecotype I is associated with the
broadest host range and I. ricinus ticks and also includes
strains causing disease in domestic animals and humans.
Ecotype II was found to be associated with roe deer and
does not include zoonotic strains. Sequence analysis of
selected ungulate isolates from our study revealed five
different variants of the partial 16S rRNA gene and two
groEL gene variants, whereby the results agree with pre-
viously published findings. Identification of the 16S
rRNA gene variant “B” (the prototype variant of the
HGA agent) and of groEL sequences that are 100% iden-
tical with the HGA agent isolated from human blood
from Slovenia (AF033101) in wild boars suggests that
they could be potential reservoirs of the HGA strain in
the study area. To our knowledge, this is the first con-
firmed occurrence of this strain in wild boars from
Slovakia, whereas sequences of former GenBank isolates
from Slovak wild boars were identical with sequences
from wild ruminants, horses, dogs or wild boar and
showed a lower degree of identity with the HGA se-
quence [24, 121]. However, further research is required
to find out if wild boars in Slovakia are involved in the
enzootic cycle of A. phagocytophilum variants pathogenic
to humans. In roe deer, 16S rRNA variant “Y” [88, 89] and
groEL ecotype II sequences [20] were identified, which
have been detected mainly in this species and have not
been associated with clinical cases of granulocytic anaplas-
mosis [20, 38, 42, 89]. Sequences from red deer, fallow
deer, and mouflon (16S rRNA variants “S” and “W”, groEL
ecotype I) showed a high degree of identity with se-
quences from wild ruminants, cattle, horses, hedge-
hogs, dogs, or foxes, i.e. variants that can cause disease in
domestic animals.
Four 16S rRNA gene variants were identified in

engorged I. ricinus larvae: variant “X”, associated with
roe deer [88, 89] in larvae from roe deer, and variants
“S”, “W” and “B” as well as groEL ecotype I in larvae
from fallow deer. Interestingly, but in agreement with re-
sults for roe deer from Germany [38], not all 16S rRNA

Kazimírová et al. Parasites & Vectors  (2018) 11:495 Page 12 of 18



gene variants from engorged ticks matched the variant
detected in the corresponding hosts. The reasons for this
variation, however, remain unclear. Nevertheless, our re-
sults support the role of cervids as natural reservoirs for
several A. phagocytophilum genetic variants in Slovakia
out of which some may be of veterinary importance.

Piroplasmids in ungulates and engorged ticks
Previous studies have suggested the reservoir role of
European cervids and caprines for different Babesia spe-
cies, including the zoonotic B. venatorum and B. divergens
[38–40, 42, 104, 111, 114, 119, 133, 134]. Infestation of
cervids with ticks that carry potentially zoonotic strains of
Babesia spp. is common [38, 58, 129, 135–137]. In the
study area, infection with babesiae has previously been
confirmed in questing I. ricinus (B. venatorum, B. capreoli
and B. odocoilei), for which vector competence was con-
firmed for B. venatorum [138], and H. concinna, infected
with Babesia spp. infective for small ruminants [79]. In
the present study, the examined ungulates were Babesia-
negative, whereas B. venatorum was identified in engorged
I. ricinus larvae attached to roe and fallow deer and B.
motasi in H. concinna larvae attached to roe deer. Consid-
ering the possibility of transovarial transmission of babe-
siae, our results suggest that natural foci of different
Babesia spp., including zoonotic strains, may be present
in the studied region, but further research is required to
elucidate their associations with reservoir hosts. The find-
ing of the B. motasi species in H. concinna is of particular
interest and supports recent results and theories on the
wide distribution of piroplasmids transmitted by this tick
in Europe and Asia [31, 79, 139], and the possible role of
migratory birds in their spread [140].
In contrast to the absence of Babesia infections, a rela-

tively high infection rate with Theileria was determined
in the examined cervids, corroborating findings from
southwestern Hungary, where exclusively Theileria spp.;
however, no Babesia spp. were identified in large game
animals [141]. The presence of piroplasmids of the genus
Theileria has been reported in wildlife from different re-
gions of mainland Europe [40, 42, 47–51, 58, 134, 141], in-
cluding a record from red deer from Slovakia dating back
to 1958 [45]. Theileria spp. have not been associated with
zoonotic infections, but chronic asymptomatic theileriosis
has been observed in European cervids that may serve as
infection reservoirs, with prevalences ranging up to 100%
in some populations [49, 50, 134, 141]. To the best of our
knowledge, this study provides the first molecular evi-
dence of Theileria in cervids and the first report of Thei-
leria infections in roe and fallow deer from Slovakia.
Theileria spp. were also detected in engorged I. ricinus
and H. concinna ticks feeding on infected animals, corrob-
orating findings from other regions of Europe with
abundant populations of I. ricinus and occurrence of H.

concinna [49, 50]. In a phylogenetic analysis, two 18S
rRNA gene sequence variants obtained from cervids and
engorged ticks clustered together with sequences desig-
nated as Theileria sp. and/or T. capreoli. This cluster in-
cluded Theileria sp. 3185/02 from roe deer, Spain [47] and
Theileria sp. BAB1158, Spain. Also, these variants showed
an identity of 99–100% to Theileria sp. ZS T04 detected
in red deer in Poland [48], Austria [50] and Germany [42],
and also to Theileria spp. identified in questing H. con-
cinna from Hungary [139] and Slovakia [79]. Importantly,
the two genotypes Theileria sp. 1 and 2 can be distin-
guished based on a single characteristic mutation that cor-
responds to those recently reported in Theileria genotypes
elaphy CE1 (exclusively identified in red and fallow deer)
and capreoli CE1 (exclusively identified in roe deer)
from Hungary, respectively [141]. These data strongly
support the finding of Hornok et al. [141] that Theileria
spp. of cervids comprises a complex of at least two or even
more species.
The modes of transmission and vectors of Theileria

spp. associated with European cervids are largely un-
known and may depend on the abundance and domin-
ance of tick species and the population density of
cervids in a particular area [141]. Either I. ricinus [47–49]
or H. concinna [50, 141] have been suggested as possible
vectors, but alternative mechanisms, e.g. transplacental
transmission, should also be taken into account, especially
in cervid populations with high infection rates [48]. The
following findings may indicate that H. concinna could be
the vector of Theileria in the study area: (i) cervids are
hosts for both I. ricinus and H. concinna ticks; (ii) the high
Theileria infection rate in cervids; (iii) the detection of
Theileria only in I. ricinus feeding on cervids, but not in
questing ticks [79]; (vi) detection of identical Theileria ge-
notypes in cervids, questing H. concinna, H. concinna at-
tached to cervids and even in a rodent-attached H.
concinna female [79]. Nevertheless, alternative mecha-
nisms of transmission may also exist. Thus, a more
in-depth molecular analysis of the detected Theileria ge-
notypes and their associations with cervid hosts and vec-
tors is needed.

The occurrence of other bacteria in engorged ticks
In this study, SFG rickettsiae (R. helvetica and R. mona-
censis), Coxiella burnetii, “Ca. N. mikurensis” and B.
burgdorferi (s.l.) were detected only in engorged I. rici-
nus ticks. Sporadic infections with R. helvetica, previ-
ously reported from roe deer from Slovakia [57] or roe
deer and wild boar from the Netherlands [59], were not
confirmed for the study area. However, our results are
consistent with other studies reporting the presence of
SFG rickettsiae in I. ricinus feeding on free-living ungu-
lates [38, 128, 129, 142]. Moreover, rickettsial infection
in tick larvae feeding on uninfected hosts as well as a
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comparable prevalence of SFG rickettsiae in the exam-
ined engorged I. ricinus and in questing ticks from the
study area [143] suggest that large ungulates play a role
in the dispersion of infected ticks, but are not involved
in the natural circulation of SFG rickettsiae in the Small
Carpathian forests.
Coxiella burnetii infections have been detected, e.g. in

red deer [114], but not in wild boar from central Italy
[127], and in red deer from the Iberian Peninsula [56],
suggesting a reservoir role of red deer. In eastern
Slovakia, exposure to C. burnetii was previously deter-
mined in game animals (up to 28.3% fallow deer and
29.6% mouflon) by routine seroscreening [144, 145].
However, there is no evidence of the involvement of
large ungulates in the life-cycle of the pathogen in this
country [146, 147]. Natural infections with C. burnetii
have been detected in ticks (questing or feeding on dif-
ferent hosts) from different countries [53, 148] including
Slovakia [74, 147, 149, 150], whereas transmission of the
Q fever agent to humans via a tick bite is rare [53].
Based on our detections of C. burnetii in all develop-
mental stages of I. ricinus that were collected from large
ungulates we assume that similarly as for SFG rickett-
siae, ungulates serve only as vehicles for the transport of
infected ticks. The same seems to apply to “Ca. N.
mikurensis” and B. burgdorferi (s.l.) that were previ-
ously detected in questing ticks from the study area
[73, 151] and in a low portion of the examined
engorged I. ricinus, but not in ungulates. This is in
line with previous findings for “Ca. N. mikurensis”,
for which rodents are suggested as reservoirs [152].
Free-living ungulates and I. ricinus feeding on them
have previously been found infected with B. burgdor-
feri (s.l.) to a very low extent and are considered to
be incompetent reservoirs for the pathogen. At high
densities, they may even cause a decline in the dens-
ity of infected ticks [63, 153].

Mixed infections in ungulates and ticks
In our study, mixed infections with A. phagocytophilum
and Theileria were found in cervids and prevailed in
engorged I. ricinus, whereas co-infections with two to
four different microorganisms were detected only in the
ticks. The only mixed infection in H. concinna was with
A. phagocytopilum and Babesia sp. Infections of free-liv-
ing ungulates and their ticks with multiple microorgan-
isms are common in natural habitats of Europe and have
been reported, e.g. from Poland [58, 119], Germany
[38, 42], Austria [111], Italy [114, 127, 128] and
Switzerland [39]. Double infections with A. phagocyto-
philum and Theileria were found, e.g. in cervids from
western Poland [58], but the reported co-infection
rates (12.3% in roe deer and 28% in red deer) were
lower than in our study.

In general, infections of ticks with multiple pathogens
can result in co-transmission of various combinations of
tick-borne microorganisms to vertebrate hosts, which
may have severe implications for human and animal
health [154–156]. We assume that co-transmission of
the detected microorganisms to ungulates by ticks does
not occur in the study area, or it may occur to a very
low extent (e.g. co-transmission of B. venatorum and A.
phagocytopilum by I. ricinus). This assumption is sup-
ported by the following findings: (i) ungulates were
found infected only with A. phagocytophilum and
Theileria and are probably reservoirs of these microor-
ganisms; (ii) I. ricinus is the competent vector for A.
phagocytophilum and B. venatorum, but probably not for
Theileria; (iii) ungulates, particularly cervids, may be
reservoirs of B. venatorum, whereas for the other re-
corded microorganisms their reservoir competence is
questionable (SFG rickettsiae, C. burnetii) or has not
been confirmed (B. burgdorferi and “Ca. N. mikurensis”);
(iv) H. concinna is probably the vector of Theileria and
B. motasi, but its vector competence for A. phagocyto-
philum has not been confirmed. On the other hand, un-
gulates seem to play an essential role in the dispersal of
ticks that carry and may transmit or co-transmit micro-
organisms with possible impact on the health of domes-
tic animals and pets [i.e. A. phagocytophilum, Babesia
spp., C. burnetii and B. burgdorferi (s.l.)], and humans
[i.e. the HGA agent, B. venatorum, “Ca. N. mikurensis”,
SFG rickettsiae, C. burnetii and B. burgdorferi (s.l.)].
However, further research is necessary to more pro-
foundly characterise the genotypes of the microorgan-
isms that circulate in the study area and their
pathogenicity to humans, domestic animals and pets.
Positive interactions (mutualism or interactions with
host symbionts), as well as competition between micro-
organisms co-infecting the vector ticks and the verte-
brate hosts, need to be explored. Such studies have the
potential to reveal (i) decreases or increases of disease
severity, (ii) an increased host susceptibility to other in-
fections, and (iii) the resulting complications for diagno-
sis and treatment.

Conclusions
The results of the study demonstrate that A. phagocytophi-
lum and Theileria circulate in natural foci of the Small
Carpathian Mountains and free-living ungulates are prob-
ably their reservoirs. Also, free-living ungulates seem to be
involved in the transport and dispersal of ticks infected with
several microorganisms including zoonotic tick-borne path-
ogens, which points to the risk of exposure of hunters and
tourists to multiple infections. Further studies are necessary
to gain a better knowledge of the epidemiology of the
tick-borne microorganisms occurring in the deciduous for-
ests of southwestern Slovakia.
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