73 research outputs found
Awareness of vitamin D deficiency among at-risk patients
<p>Abstract</p> <p>Background</p> <p>Vitamin D deficiency is a significant problem for a growing proportion of the UK population. Individuals with dark or covered skin are at particularly high risk due to ethno-cultural, environmental and genetic factors. We assessed the level of awareness of vitamin D deficiency among at-risk patients in order to identify groups most in need of education.</p> <p>Findings</p> <p>A cross-sectional survey using a piloted questionnaire was conducted among consecutive at-risk patients without a diagnosis of Vitamin D deficiency arriving at a large inner city general practice in the North West of England over a five day period. The survey was completed by 221 patients. The mean age was 35 years. 28% of them (n = 61) had never heard about vitamin D. Older patients (p = 0.003) were less likely to have heard about vitamin D. 54% of participants were unaware of the commonest symptoms of vitamin D deficiency. 34% did not expose their skin other than their face in the last one year, and 11% did not include vitamin D rich foods in their diet.</p> <p>Conclusion</p> <p>The majority of at-risk patients are aware of vitamin D; nevertheless, there is a significant lack of knowledge among older people, who have higher morbidity. A programme of targeted education of the at-risk population is recommended.</p
Climatic variables and malaria transmission dynamics in Jimma town, South West Ethiopia
<p>Abstract</p> <p>Background:-</p> <p>In Ethiopia, malaria is seasonal and unstable, causing frequent epidemics. It usually occurs at altitudes < 2,000 m above sea level. Occasionally, transmission of malaria occurs in areas previously free of malaria, including areas > 2,000 m above sea level. For transmission of malaria parasite, climatic factors are important determinants as well as non-climatic factors that can negate climatic influences. Indeed, there is a scarcity of information on the correlation between climatic variability and malaria transmission risk in Ethiopia in general and in the study area in particular. Therefore, the aim of this study was to determine the level of correlation between meteorological variables and malaria cases.</p> <p>Methods: -</p> <p>Time-series analysis was conducted using data on monthly meteorological variables and monthly total malaria in Jimma town, south west Ethiopia, for the period 2000-2009. All the data were entered and analyzed using SPSS-15 database program. Spearman correlation and linear regression analysis were used to asses association between the variables.</p> <p>Results: -</p> <p>During last ten years (2000-2009), a fluctuating trend of malaria transmission was observed with <it>P.vivax </it>becoming predominant species. Spearman correlation analysis showed that monthly minimum temperature, total rainfall and two measures of relative humidity were positively related with malaria but monthly maximum temperature negatively related. Also regression analysis suggested that monthly minimum (p = 0.008), monthly maximum temperature (p = 0.013) and monthly total rainfall (p = 0.040), at one month lagged effect, were significant meteorological factors for transmission of malaria in the study area.</p> <p>Conclusion: -</p> <p>Malaria incidences in the last decade seem to have a significant association with meteorological variables. In future, prospective and multidisciplinary cooperative research involving researchers from the fields of parasitology, epidemiology, botany, agriculture and climatology is necessary to identify the real effect of meteorological factors on vector- borne diseases like malaria.</p
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015
SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation
Microclimate variables of the ambient environment deliver the actual estimates of the extrinsic incubation period of Plasmodium vivax and Plasmodium falciparum : A study from a malaria-endemic urban setting, Chennai in India
Background: Environmental factors such as temperature, relative humidity and their daily variation influence a range of mosquito life history traits and hence, malaria transmission. The standard way of characterizing environmental factors with meteorological station data need not be the actual microclimates experienced by mosquitoes within local transmission settings. Methods: A year-long study was conducted in Chennai, India to characterize local temperature and relative humidity (RH). Data loggers (Hobos) were placed in a range of probable indoor and outdoor resting sites of Anopheles stephensi. Recordings were taken hourly to estimate mean temperature and RH, together with daily temperature range (DTR) and daily relative humidity range. The temperature data were used to explore the predicted variation in extrinsic incubation period (EIP) of Plasmodium falciparum and Plasmodium vivax between microhabitats and across the year. Results: Mean daily temperatures within the indoor settings were significantly warmer than those recorded outdoors. DTR in indoor environments was observed to be modest and ranged from 2 to 6 °C. Differences in EIP between microhabitats were most notable during the hottest summer months of April-June, with parasite development predicted to be impaired for tiled houses and overhead tanks. Overall, the prevailing warm and stable conditions suggest rapid parasite development rate regardless of where mosquitoes might rest. Taking account of seasonal and local environmental variation, the predicted EIP of P. falciparum varied from a minimum of 9.1 days to a maximum of 15.3 days, while the EIP of P. vivax varied from 8.0 to 24.3 days. Conclusions: This study provides a detailed picture of the actual microclimates experienced by mosquitoes in an urban slum malaria setting. The data indicate differences between microhabitats that could impact mosquito and parasite life history traits. The predicted effects for EIP are often relatively subtle, but variation between minimum and maximum EIPs can play a role in disease transmission, depending on the time of year and where mosquitoes rest. Appropriate characterization of the local microclimate conditions would be the key to fully understand the effects of environment on local transmission ecology
Global, regional, and national mortality among young people aged 10–24 years, 1950–2019: a systematic analysis for the Global Burden of Disease Study 2019
Summary: Background Documentation of patterns and long-term trends in mortality in young people, which reflect huge changes in demographic and social determinants of adolescent health, enables identification of global investment priorities for this age group. We aimed to analyse data on the number of deaths, years of life lost, and mortality rates by sex and age group in people aged 10–24 years in 204 countries and territories from 1950 to 2019 by use of estimates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods We report trends in estimated total numbers of deaths and mortality rate per 100 000 population in young people aged 10–24 years by age group (10–14 years, 15–19 years, and 20–24 years) and sex in 204 countries and territories between 1950 and 2019 for all causes, and between 1980 and 2019 by cause of death. We analyse variation in outcomes by region, age group, and sex, and compare annual rate of change in mortality in young people aged 10–24 years with that in children aged 0–9 years from 1990 to 2019. We then analyse the association between mortality in people aged 10–24 years and socioeconomic development using the GBD Socio-demographic Index (SDI), a composite measure based on average national educational attainment in people older than 15 years, total fertility rate in people younger than 25 years, and income per capita. We assess the association between SDI and all-cause mortality in 2019, and analyse the ratio of observed to expected mortality by SDI using the most recent available data release (2017). Findings In 2019 there were 1·49 million deaths (95% uncertainty interval 1·39–1·59) worldwide in people aged 10–24 years, of which 61% occurred in males. 32·7% of all adolescent deaths were due to transport injuries, unintentional injuries, or interpersonal violence and conflict; 32·1% were due to communicable, nutritional, or maternal causes; 27·0% were due to non-communicable diseases; and 8·2% were due to self-harm. Since 1950, deaths in this age group decreased by 30·0% in females and 15·3% in males, and sex-based differences in mortality rate have widened in most regions of the world. Geographical variation has also increased, particularly in people aged 10–14 years. Since 1980, communicable and maternal causes of death have decreased sharply as a proportion of total deaths in most GBD super-regions, but remain some of the most common causes in sub-Saharan Africa and south Asia, where more than half of all adolescent deaths occur. Annual percentage decrease in all-cause mortality rate since 1990 in adolescents aged 15–19 years was 1·3% in males and 1·6% in females, almost half that of males aged 1–4 years (2·4%), and around a third less than in females aged 1–4 years (2·5%). The proportion of global deaths in people aged 0–24 years that occurred in people aged 10–24 years more than doubled between 1950 and 2019, from 9·5% to 21·6%. Interpretation Variation in adolescent mortality between countries and by sex is widening, driven by poor progress in reducing deaths in males and older adolescents. Improving global adolescent mortality will require action to address the specific vulnerabilities of this age group, which are being overlooked. Furthermore, indirect effects of the COVID-19 pandemic are likely to jeopardise efforts to improve health outcomes including mortality in young people aged 10–24 years. There is an urgent need to respond to the changing global burden of adolescent mortality, address inequities where they occur, and improve the availability and quality of primary mortality data in this age group
Mapping geographical inequalities in access to drinking water and sanitation facilities in low-income and middle-income countries, 2000-17
Background Universal access to safe drinking water and sanitation facilities is an essential human right, recognised in the Sustainable Development Goals as crucial for preventing disease and improving human wellbeing. Comprehensive, high-resolution estimates are important to inform progress towards achieving this goal. We aimed to produce high-resolution geospatial estimates of access to drinking water and sanitation facilities. Methods We used a Bayesian geostatistical model and data from 600 sources across more than 88 low-income and middle-income countries (LMICs) to estimate access to drinking water and sanitation facilities on continuous continent-wide surfaces from 2000 to 2017, and aggregated results to policy-relevant administrative units. We estimated mutually exclusive and collectively exhaustive subcategories of facilities for drinking water (piped water on or off premises, other improved facilities, unimproved, and surface water) and sanitation facilities (septic or sewer sanitation, other improved, unimproved, and open defecation) with use of ordinal regression. We also estimated the number of diarrhoeal deaths in children younger than 5 years attributed to unsafe facilities and estimated deaths that were averted by increased access to safe facilities in 2017, and analysed geographical inequality in access within LMICs. Findings Across LMICs, access to both piped water and improved water overall increased between 2000 and 2017, with progress varying spatially. For piped water, the safest water facility type, access increased from 40.0% (95% uncertainty interval [UI] 39.4-40.7) to 50.3% (50.0-50.5), but was lowest in sub-Saharan Africa, where access to piped water was mostly concentrated in urban centres. Access to both sewer or septic sanitation and improved sanitation overall also increased across all LMICs during the study period. For sewer or septic sanitation, access was 46.3% (95% UI 46.1-46.5) in 2017, compared with 28.7% (28.5-29.0) in 2000. Although some units improved access to the safest drinking water or sanitation facilities since 2000, a large absolute number of people continued to not have access in several units with high access to such facilities (>80%) in 2017. More than 253 000 people did not have access to sewer or septic sanitation facilities in the city of Harare, Zimbabwe, despite 88.6% (95% UI 87.2-89.7) access overall. Many units were able to transition from the least safe facilities in 2000 to safe facilities by 2017; for units in which populations primarily practised open defecation in 2000, 686 (95% UI 664-711) of the 1830 (1797-1863) units transitioned to the use of improved sanitation. Geographical disparities in access to improved water across units decreased in 76.1% (95% UI 71.6-80.7) of countries from 2000 to 2017, and in 53.9% (50.6-59.6) of countries for access to improved sanitation, but remained evident subnationally in most countries in 2017. Interpretation Our estimates, combined with geospatial trends in diarrhoeal burden, identify where efforts to increase access to safe drinking water and sanitation facilities are most needed. By highlighting areas with successful approaches or in need of targeted interventions, our estimates can enable precision public health to effectively progress towards universal access to safe water and sanitation. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd.Peer reviewe
- …