488 research outputs found

    Use of floating PV plants for coordinated operation with hydropower plants: Case study of the hydroelectric plants of the Sao Francisco River basin

    Full text link
    [EN] In recent years, the Brazilian electricity sector has seen a considerable reduction in hydroelectric production and an increase in dependence on the complementation of thermoelectric power plants to meet the energy demand. This issue has led to an increase in greenhouse gas emissions, which has intensified climate change and modified rainfall regimes in several regions of the country, as well as increased the cost of energy. The use of floating PV plants in coordinated operation with hydroelectric plants can establish a mutual compensation between these sources and replace a large portion of the energy that comes from thermal sources, thereby reducing the dependence on thermoelectric energy for hydropower complementation. Thus, this paper presents a procedure for technically and economically sizing floating PV plants for coordinated operation with hydroelectric plants. A case study focused on the hydroelectric plants of the Sao Francisco River basin, where there has been intense droughts and increased dependence on thermoelectric energy for hydropower complementation. The results of the optimized design show that a PV panel tilt of approximately 3 degrees can generate energy at the lowest cost (from R 298.00/MWhtoR298.00/MWh to R312.00/MWh, depending on the geographical location of the FLOATING PV platform on the reservoir). From an energy perspective, the average energy gain generated by the hydroelectric plant after adding the floating PV generation was 76%, whereas the capacity factor increased by 17.3% on average. In terms of equivalent inflow, the PV source has a seasonal profile that compliments the natural inflow of the river. Overall, the proposed coordinated operation could replace much of the thermoelectric generation in Brazil.The authors would like to thank the Brazilian National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq; in Portuguese) for granting a productivity in research scholarship to Prof. Regina Mambeli Barros (PQ2, Process number: 301986/2015-0) and Prof. Geraldo Lúcio Tiago Filho and to the Brazilian Coordination for the Improvement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Capes; in Portuguese) for granting the Master of Science scholarship to Naidion Motta Silvério and the Doctorate scholarship to Ivan Felipe da Silva dos Santos.Silverio, N.; Barros, R.; Tiago Filho, GL.; Redón-Santafé, M.; Silva Dos Santos, IF.; De Mello Valerio, VE. (2018). Use of floating PV plants for coordinated operation with hydropower plants: Case study of the hydroelectric plants of the Sao Francisco River basin. Energy Conversion and Management. 171:339-349. https://doi.org/10.1016/j.enconman.2018.05.095S33934917

    Search for fingerprints of disoriented chiral condensates in cosmic ray showers

    Full text link
    Although the generation of disoriented chiral condensates (DCCs), where the order parameter for chiral symmetry breaking is misaligned with respect to the vacuum direction in isospin state, is quite natural in the theory of strong interactions, they have so far eluded experiments in accelerators and cosmic rays. If DCCs are formed in high-energy nuclear collisions, the relevant outcome are very large event-by-event fluctuations in the neutral-to-charged pion fraction. In this note we search for fingerprints of DCC formation in observables of ultra-high energy cosmic ray showers. We present simulation results for the depth of the maximum (XmaxX_{max}) and number of muons on the ground, evaluating their sensitivity to the neutral-to-charged pion fraction asymmetry produced in the primary interaction.Comment: 7 pages, 4 figure

    Quantum Chaos in Open versus Closed Quantum Dots: Signatures of Interacting Particles

    Full text link
    This paper reviews recent studies of mesoscopic fluctuations in transport through ballistic quantum dots, emphasizing differences between conduction through open dots and tunneling through nearly isolated dots. Both the open dots and the tunnel-contacted dots show random, repeatable conductance fluctuations with universal statistical proper-ties that are accurately characterized by a variety of theoretical models including random matrix theory, semiclassical methods and nonlinear sigma model calculations. We apply these results in open dots to extract the dephasing rate of electrons within the dot. In the tunneling regime, electron interaction dominates transport since the tunneling of a single electron onto a small dot may be sufficiently energetically costly (due to the small capacitance) that conduction is suppressed altogether. How interactions combine with quantum interference are best seen in this regime.Comment: 15 pages, 11 figures, PDF 2.1 format, to appear in "Chaos, Solitons & Fractals

    Method to compute the stress-energy tensor for the massless spin 1/2 field in a general static spherically symmetric spacetime

    Get PDF
    A method for computing the stress-energy tensor for the quantized, massless, spin 1/2 field in a general static spherically symmetric spacetime is presented. The field can be in a zero temperature state or a non-zero temperature thermal state. An expression for the full renormalized stress-energy tensor is derived. It consists of a sum of two tensors both of which are conserved. One tensor is written in terms of the modes of the quantized field and has zero trace. In most cases it must be computed numerically. The other tensor does not explicitly depend on the modes and has a trace equal to the trace anomaly. It can be used as an analytic approximation for the stress-energy tensor and is equivalent to other approximations that have been made for the stress-energy tensor of the massless spin 1/2 field in static spherically symmetric spacetimes.Comment: 34 pages, no figure

    The fraction of cancer attributable to ways of life, infections, occupation, and environmental agents in Brazil in 2020

    Get PDF
    Many human cancers develop as a result of exposure to risk factors related to the environment and ways of life. The aim of this study was to estimate attributable fractions of 25 types of cancers resulting from exposure to modifiable risk factors in Brazil. The prevalence of exposure to selected risk factors among adults was obtained from population-based surveys conducted from 2000 to 2008. Risk estimates were based on data drawn from metaanalyses or large, high quality studies. Population-attributable fractions (PAF) for a combination of risk factors, as well as the number of preventable deaths and cancer cases, were calculated for 2020. The known preventable risk factors studied will account for 34% of cancer cases among men and 35% among women in 2020, and for 46% and 39% deaths, respectively. The highest attributable fractions were estimated for tobacco smoking, infections, low consumption of fruits and vegetables, excess weight, reproductive factors, and physical inactivity. This is the first study to systematically estimate the fraction of cancer attributable to potentially modifiable risk factors in Brazil. Strategies for primary prevention of tobacco smoking and control of infection and the promotion of a healthy diet and physical activity should be the main priorities in policies for cancer prevention in the country. \ua9 2016 Azevedo e Silva et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Quantum Monte Carlo and variational approaches to the Holstein model

    Full text link
    Based on the canonical Lang-Firsov transformation of the Hamiltonian we develop a very efficient quantum Monte Carlo algorithm for the Holstein model with one electron. Separation of the fermionic degrees of freedom by a reweighting of the probability distribution leads to a dramatic reduction in computational effort. A principal component representation of the phonon degrees of freedom allows to sample completely uncorrelated phonon configurations. The combination of these elements enables us to perform efficient simulations for a wide range of temperature, phonon frequency and electron-phonon coupling on clusters large enough to avoid finite-size effects. The algorithm is tested in one dimension and the data are compared with exact-diagonalization results and with existing work. Moreover, the ideas presented here can also be applied to the many-electron case. In the one-electron case considered here, the physics of the Holstein model can be described by a simple variational approach.Comment: 18 pages, 11 Figures, v2: one typo correcte

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic
    corecore