78 research outputs found

    Kemijski sastav te antioksidacijski, citotoksični i insekticidni potencijal valerijane Valeriana alliariifolia u Turskoj

    Get PDF
    Valeriana is a common plant species used for various healing purposes in folk medicine since antiquity. This study investigates the phytochemical profile, antioxidant, cytotoxic, and insecticidal activity of Valeriana alliariifolia Adams, a species that has traditionally been used in Turkey. For the analyses we prepared four root extracts of V. alliariifolia Adams using hexane (HM1), chloroform (CM1), ethanol (EM1), and water (WM1) for maceration. Additionally, two extracts were also prepared from its roots by maceration separately with ethanol (EM2) and water (WM2). One sample was prepared as a water infusion (WI), according to the procedure used in Turkish traditional medicine. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical cation scavenging activity tests showed that ethanol extracts had the strongest antioxidant activity: EM1 (IC50 – DPPH: 17.694 ÎŒg/mL; ABTS: 23.8 ÎŒg/mL) and EM2 (IC50 – DPPH: 20 ÎŒg/mL; ABTS: 21.5 ÎŒg/mL). The hexane extract, HM1, was the most cytotoxic (IC50<10 ÎŒg/mL against HepG2 and HUVEC) and EM2 strongly cytotoxic (IC50<10 ÎŒg/mL against HepG2 and IC50: 11.96 ÎŒg/mL against HUVEC). The extracts with demonstrated cytotoxic activities were further examined to check their insecticidal activity against adult female mosquito Aedes aegypti and first instar Ae. aegypti larvae. HM1 was the most effective (90±10 %), which was consistent with its cytotoxic activity. Because of the high antioxidant, cytotoxic, and insecticidal activities, we ran phytochemical analyses of the HM1, EM1, and EM2 extracts with GC-MS (for HM1) and LC-MS/MS (for EM1 and EM2). We also analysed the composition of the essential oil obtained from V. alliariifolia roots by micro-distillation in order to compare its content with HM1, which contains volatile compounds. Phytochemical analyses revealed that the major compound in HM1 was isovaleric acid (16 %) and in the essential oil 1,8-cineole (2.9 %). EM1 and EM2 contained 5-O-caffeoylquinic acid (chlorogenic acid), verbascoside (acteoside), and 3,5-dicaffeoylquinic acid as major components. In the light of our findings and available literature, we can conclude that V. alliariifolia has a good bioactive potential that could be used for different purposes, including the development of new agents for the treatment of various diseases. The difference in the content between the essential oil and HM1 was remarkable. It suggests that the variability observed in the activity of the samples was a result of composition and that, therefore, the aim of treatment should dictate which type of preparation is to be selected. An added value of our study is that it determined verbascoside and methylquercetin rutinoside for the first time in the Valeriana extracts.Valerijana (odoljen) česta je biljna vrsta koja se zbog svojih ljekovitih svojstava od davnina rabi u narodnoj medicini. U ovome se istraĆŸivanju utvrdio fitokemijski profil te antioksidacijsko, citotoksično i insekticidno djelovanje tradicionalne vrste koja se za liječenje rabi u Turskoj – Valeriana alliariifolia Adams. Za analizu je maceracijom pripremljeno ĆĄest ekstrakata njezina korijena pomoću heksana (HM1), kloroforma (CM1), etanola (EM1, EM2) i vode (WM1, WM2). Jedan je uzorak pripremljen infuzijom vodom (WI) prema tradicionalnom turskom receptu za ljekovite pripravke. Testovima antioksidacijskoga djelovanja pomoću 2,2-difenil-1-pikrilhidrazila (DPPH) i 2,2’-azino-bis(3-etilbenzotiazolin-6-sulfonične kiseline (ABTS) izdvojeni su sljedeći ekstrakti s najjačim antioksidacijskim djelovanjem: EM1 (IC50 – DPPH: 17,694 ÎŒg/mL; ABTS: 23,8 ÎŒg/mL) i EM2 (IC50 – DPPH: 20 ÎŒg/mL; ABTS: 21,5 ÎŒg/mL). Ekstrakt s heksanom, HM1, iskazao je najveću citotoksičnost (IC50<10 ÎŒg/mL protiv tumorskih stanica HepG2 i HUVEC), a EM2 snaĆŸnu citotoksičnost (IC50<10 ÎŒg/mL protiv HepG2 stanica te IC50 11,96 ÎŒg/mL protiv HUVEC stanica). Ekstrakte s najsnaĆŸnijim citotoksičnim djelovanjem također smo analizirali za insekticidno djelovanje protiv odraslih ĆŸenki komarca vrste Aedes aegypti te njihovih ličinki. U skladu sa svojom citotoksičnosti, HM1 se pokazao najdjelotvornijim (smrtnost 90±10 %). Zbog snaĆŸnog antioksidacijskog, citotoksičnog i insekticidnog djelovanja, napravili smo i fitokemijsku analizu ekstrakata HM1, EM1 i EM2 sluĆŸeći se metodama GC-MS (za HM1) i LC-MS/MS (za EM1 i EM2). Također smo analizirali sastav esencijalnoga ulja dobivenoga mikrodestilacijom korijena V. alliariifolia kako bismo ga usporedili sa sastavom HM1, koji je sadrĆŸavao hlapljive sastojke. Fitokemijska je analiza pokazala da je glavni sastojak HM1 izovalerijanska kiselina (16 %), a esencijalnoga ulja 1,8-cineol (2,9 %). Glavni sastojci ekstrakata EM1 i EM2 bili su 5-O-kafeoilkvinska kiselina (klorogena kiselina), verbakozid (akteozid) i 3,5-dikafeoilkvinska kiselina. U svjetlu ovih rezultata i dostupne literature, moĆŸemo zaključiti da V. alliariifolia ima dobar bioaktivni potencijal, koji se moĆŸe iskoristiti za različite svrhe poput razvoja novih tvari za liječenje bolesti. Razlika u sadrĆŸaju između esencijalnoga ulja i ekstrakta HM1 pokazala se golemom te upućuje na to da su razlike u aktivnosti između uzoraka rezultat sastava, zbog čega primjena/liječenje trebaju uvjetovati koja će se vrsta pripravka odabrati. Dodatna je vrijednost ovoga istraĆŸivanja ĆĄto su se u ekstraktima valerijane prvi put otkrili verbaskozid i metilkvercetin rutinozid

    Uncertainty of wheat water use: Simulated patterns and sensitivity to temperature and CO₂

    Get PDF
    Projected global warming and population growth will reduce future water availability for agriculture. Thus, it is essential to increase the efficiency in using water to ensure crop productivity. Quantifying crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal. Here, sixteen wheat simulation models were used to quantify sources of model uncertainty and to estimate the relative changes and variability between models for simulated WU, water use efficiency (WUE, WU per unit of grain dry mass produced), transpiration efficiency (Teff, transpiration per kg of unit of grain yield dry mass produced), grain yield, crop transpiration and soil evaporation at increased temperatures and elevated atmospheric carbon dioxide concentrations ([CO2]). The greatest uncertainty in simulating water use, potential evapotranspiration, crop transpiration and soil evaporation was due to differences in how crop transpiration was modelled and accounted for 50% of the total variability among models. The simulation results for the sensitivity to temperature indicated that crop WU will decline with increasing temperature due to reduced growing seasons. The uncertainties in simulated crop WU, and in particularly due to uncertainties in simulating crop transpiration, were greater under conditions of increased temperatures and with high temperatures in combination with elevated atmospheric [CO2] concentrations. Hence the simulation of crop WU, and in particularly crop transpiration under higher temperature, needs to be improved and evaluated with field measurements before models can be used to simulate climate change impacts on future crop water demand

    The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    Get PDF
    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during two consecutive winter cropping cycles at hot, irrigated, and low latitude sites in Mexico (Ciudad Obregon and Tlaltizapan), Egypt (Aswan), India (Dharwar), the Sudan (Wad Medani), and Bangladesh (Dinajpur). Experiments in Mexico included normal (November-December) and late (January-March) sowing dates. Data include local daily weather data, soil characteristics and initial soil conditions, crop measurements (anthesis and maturity dates, anthesis and final total above ground biomass, final grain yields and yields components), and cultivar information. Simulations include both daily in-season and end-of-season results from 30 wheat models

    Fast and Selective ammonia transport by aquaporin-8

    Get PDF
    The transport of ammonia/ammonium is fundamental to nitrogen metabolism in all forms of life. So far, no clear picture has emerged as to whether a protein channel is capable of transporting exclusively neutral NH(3) while excluding H(+) and NH(4)(+). Our research is the first stoichiometric study to show the selective transport of NH(3) by a membrane channel. The purified water channel protein aquaporin-8 was reconstituted into planar bilayers, and the exclusion of NH(4)(+) or H(+) was established by ensuring a lack of current under voltage clamp conditions. The single channel water permeability coefficient of 1.2 x 10(-14) cm(3)/subunit/s was established by imposing an osmotic gradient across reconstituted planar bilayers, and resulting minute changes in ionic concentration close to the membrane surface were detected. It is more than 2-fold smaller than the single channel ammonia permeability (2.7 x 10(-14) cm(3)/subunit/s) that was derived by establishing a transmembrane ammonium concentration gradient and measuring the resulting concentration increases adjacent to the membrane. This permeability ratio suggests that electrically silent ammonia transport may be the main function of AQP8

    New factors for protein transport identified by a genome-wide CRISPRi screen in mammalian cells

    Get PDF
    Protein and membrane trafficking pathways are critical for cell and tissue homeostasis. Traditional genetic and biochemical approaches have shed light on basic principles underlying these processes. However, the list of factors required for secretory pathway function remains incomplete, and mechanisms involved in their adaptation poorly understood. Here, we present a powerful strategy based on a pooled genome-wide CRISPRi screen that allowed the identification of new factors involved in protein transport. Two newly identified factors, TTC17 and CCDC157, localized along the secretory pathway and were found to interact with resident proteins of ER-Golgi membranes. In addition, we uncovered that upon TTC17 knockdown, the polarized organization of Golgi cisternae was altered, creating glycosylation defects, and that CCDC157 is an important factor for the fusion of transport carriers to Golgi membranes. In conclusion, our work identified and characterized new actors in the mechanisms of protein transport and secretion, and opens stimulating perspectives for the use of our platform in physiological and pathological contexts.Includes Wellcome Trust, MRC and H202

    IQGAP1 Interacts with Components of the Slit Diaphragm Complex in Podocytes and Is Involved in Podocyte Migration and Permeability In Vitro

    Get PDF
    IQGAP1 is a scaffold protein that interacts with proteins of the cytoskeleton and the intercellular adhesion complex. In podocytes, IQGAP1 is associated with nephrin in the glomerular slit diaphragm (SD) complex, but its role remains ill-defined. In this work, we investigated the interaction of IQGAP1 with the cytoskeleton and SD proteins in podocytes in culture, and its role in podocyte migration and permeability. Expression, localization, and interactions between IQGAP1 and SD or cytoskeletal proteins were determined in cultured human podocytes by Western blot (WB), immunocytolocalization (IC), immunoprecipitation (IP), and In situ Proximity Ligation assay (IsPL). Involvement of IQGAP1 in migration and permeability was also assessed. IQGAP1 expression in normal kidney biopsies was studied by immunohistochemistry. IQGAP1 expression by podocytes increased during their in vitro differentiation. IC, IP, and IsPL experiments showed colocalizations and/or interactions between IQGAP1 and SD proteins (nephrin, MAGI-1, CD2AP, NCK 1/2, podocin), podocalyxin, and cytoskeletal proteins (α-actinin-4). IQGAP1 silencing decreased podocyte migration and increased the permeability of a podocyte layer. Immunohistochemistry on normal human kidney confirmed IQGAP1 expression in podocytes and distal tubular epithelial cells and also showed an expression in glomerular parietal epithelial cells. In summary, our results suggest that IQGAP1, through its interaction with components of SD and cytoskeletal proteins, is involved in podocyte barrier properties

    Postnatal Survival of Mice with Maternal Duplication of Distal Chromosome 7 Induced by a Igf2/H19 Imprinting Control Region Lacking Insulator Function

    Get PDF
    The misexpressed imprinted genes causing developmental failure of mouse parthenogenones are poorly defined. To obtain further insight, we investigated misexpressions that could cause the pronounced growth deficiency and death of fetuses with maternal duplication of distal chromosome (Chr) 7 (MatDup.dist7). Their small size could involve inactivity of Igf2, encoding a growth factor, with some contribution by over-expression of Cdkn1c, encoding a negative growth regulator. Mice lacking Igf2 expression are usually viable, and MatDup.dist7 death has been attributed to the misexpression of Cdkn1c or other imprinted genes. To examine the role of misexpressions determined by two maternal copies of the Igf2/H19 imprinting control region (ICR)—a chromatin insulator, we introduced a mutant ICR (ICRΔ) into MatDup.dist7 fetuses. This activated Igf2, with correction of H19 expression and other imprinted transcripts expected. Substantial growth enhancement and full postnatal viability was obtained, demonstrating that the aberrant MatDup.dist7 phenotype is highly dependent on the presence of two unmethylated maternal Igf2/H19 ICRs. Activation of Igf2 is likely the predominant correction that rescued growth and viability. Further experiments involved the introduction of a null allele of Cdkn1c to alleviate its over-expression. Results were not consistent with the possibility that this misexpression alone, or in combination with Igf2 inactivity, mediates MatDup.dist7 death. Rather, a network of misexpressions derived from dist7 is probably involved. Our results are consistent with the idea that reduced expression of IGF2 plays a role in the aetiology of the human imprinting-related growth-deficit disorder, Silver-Russell syndrome

    PTCH1+/− Dermal Fibroblasts Isolated from Healthy Skin of Gorlin Syndrome Patients Exhibit Features of Carcinoma Associated Fibroblasts

    Get PDF
    Gorlin's or nevoid basal cell carcinoma syndrome (NBCCS) causes predisposition to basal cell carcinoma (BCC), the commonest cancer in adult human. Mutations in the tumor suppressor gene PTCH1 are responsible for this autosomal dominant syndrome. In NBCCS patients, as in the general population, ultraviolet exposure is a major risk factor for BCC development. However these patients also develop BCCs in sun-protected areas of the skin, suggesting the existence of other mechanisms for BCC predisposition in NBCCS patients. As increasing evidence supports the idea that the stroma influences carcinoma development, we hypothesized that NBCCS fibroblasts could facilitate BCC occurence of the patients. WT (n = 3) and NBCCS fibroblasts bearing either nonsense (n = 3) or missense (n = 3) PTCH1 mutations were cultured in dermal equivalents made of a collagen matrix and their transcriptomes were compared by whole genome microarray analyses. Strikingly, NBCCS fibroblasts over-expressed mRNAs encoding pro-tumoral factors such as Matrix Metalloproteinases 1 and 3 and tenascin C. They also over-expressed mRNA of pro-proliferative diffusible factors such as fibroblast growth factor 7 and the stromal cell-derived factor 1 alpha, known for its expression in carcinoma associated fibroblasts. These data indicate that the PTCH1+/− genotype of healthy NBCCS fibroblasts results in phenotypic traits highly reminiscent of those of BCC associated fibroblasts, a clue to the yet mysterious proneness to non photo-exposed BCCs in NBCCS patients

    The Meningococcal Vaccine Candidate Neisserial Surface Protein A (NspA) Binds to Factor H and Enhances Meningococcal Resistance to Complement

    Get PDF
    Complement forms an important arm of innate immunity against invasive meningococcal infections. Binding of the alternative complement pathway inhibitor factor H (fH) to fH-binding protein (fHbp) is one mechanism meningococci employ to limit complement activation on the bacterial surface. fHbp is a leading vaccine candidate against group B Neisseria meningitidis. Novel mechanisms that meningococci employ to bind fH could undermine the efficacy of fHbp-based vaccines. We observed that fHbp deletion mutants of some meningococcal strains showed residual fH binding suggesting the presence of a second receptor for fH. Ligand overlay immunoblotting using membrane fractions from one such strain showed that fH bound to a ∌17 kD protein, identified by MALDI-TOF analysis as Neisserial surface protein A (NspA), a meningococcal vaccine candidate whose function has not been defined. Deleting nspA, in the background of fHbp deletion mutants, abrogated fH binding and mAbs against NspA blocked fH binding, confirming NspA as a fH binding molecule on intact bacteria. NspA expression levels vary among strains and expression correlated with the level of fH binding; over-expressing NspA enhanced fH binding to bacteria. Progressive truncation of the heptose (Hep) I chain of lipooligosaccharide (LOS), or sialylation of lacto-N-neotetraose LOS both increased fH binding to NspA-expressing meningococci, while expression of capsule reduced fH binding to the strains tested. Similar to fHbp, binding of NspA to fH was human-specific and occurred through fH domains 6–7. Consistent with its ability to bind fH, deleting NspA increased C3 deposition and resulted in increased complement-dependent killing. Collectively, these data identify a key complement evasion mechanism with important implications for ongoing efforts to develop meningococcal vaccines that employ fHbp as one of its components

    Multimodel ensembles of wheat growth: many models are better than one.

    Get PDF
    Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models
    • 

    corecore