502 research outputs found

    One-vortex moduli space and Ricci flow

    Full text link
    The metric on the moduli space of one abelian Higgs vortex on a surface has a natural geometrical evolution as the Bradlow parameter, which determines the vortex size, varies. It is shown by various arguments, and by calculations in special cases, that this geometrical flow has many similarities to Ricci flow.Comment: 20 page

    Self-Similar Dynamical Relaxation of Dark Matter Halos in an Expanding Universe

    Full text link
    We investigate the structure of cold dark matter halos using advanced models of spherical collapse and accretion in an expanding Universe. These base on solving time-dependent equations for the moments of the phase-space distribution function in the fluid approximation; our approach includes non-radial random motions, and most importantly, an advanced treatment of both dynamical relaxation effects that takes place in the infalling matter: phase-mixing associated to shell crossing, and collective collisions related to physical clumpiness. We find self-similar solutions for the spherically-averaged profiles of mass density rho(r), pseudo phase-space density Q(r) and anisotropy parameter beta(r). These profiles agree with the outcomes of state-of-the-art N-body simulations in the radial range currently probed by the latter; at smaller radii, we provide specific predictions. In the perspective provided by our self-similar solutions we link the halo structure to its two-stage growth history, and propose the following picture. During the early fast collapse of the inner region dominated by a few merging clumps, efficient dynamical relaxation plays a key role in producing a closely universal mass density and pseudo phase-space density profiles; in particular, these are found to depend only weakly on the detailed shape of the initial perturbation and the related collapse times. The subsequent inside-out growth of the outer regions feeds on the slow accretion of many small clumps and diffuse matter; thus the outskirts are only mildly affected by dynamical relaxation but are more sensitive to asymmetries and cosmological variance.Comment: 31 pages, 16 figures. Typos corrected. Accepted by Ap

    The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: selecting emission line galaxies using the Fisher discriminant

    Get PDF
    We present a new selection technique of producing spectroscopic target catalogues for massive spectroscopic surveys for cosmology. This work was conducted in the context of the extended Baryon Oscillation Spectroscopic Survey (eBOSS), which will use ~200 000 emission line galaxies (ELGs) at 0.6<zspec<1.0 to obtain a precise baryon acoustic oscillation measurement. Our proposed selection technique is based on optical and near-infrared broad-band filter photometry. We used a training sample to define a quantity, the Fisher discriminant (linear combination of colours), which correlates best with the desired properties of the target: redshift and [OII] flux. The proposed selections are simply done by applying a cut on magnitudes and this Fisher discriminant. We used public data and dedicated SDSS spectroscopy to quantify the redshift distribution and [OII] flux of our ELG target selections. We demonstrate that two of our selections fulfil the initial eBOSS/ELG redshift requirements: for a target density of 180 deg^2, ~70% of the selected objects have 0.6<zspec<1.0 and only ~1% of those galaxies in the range 0.6<zspec<1.0 are expected to have a catastrophic zspec estimate. Additionally, the stacked spectra and stacked deep images for those two selections show characteristic features of star-forming galaxies. The proposed approach using the Fisher discriminant could, however, be used to efficiently select other galaxy populations, based on multi-band photometry, providing that spectroscopic information is available. This technique could thus be useful for other future massive spectroscopic surveys such as PFS, DESI, and 4MOST.Comment: Version published in A&

    Understanding the shape of the halo-mass and galaxy-mass cross-correlation functions

    Full text link
    We use the Millennium Simulation to measure the cross-correlation between halo centres and mass (or equivalently the average density profiles of dark haloes) in a LCDM cosmology. We present results for radii in the range 10 kpc/h < r < 30 Mpc/h for halo masses in the range 4e10 Msol/h < M200 < 4e14 Msol/h. Both at z=0 and at z=0.76 these cross-correlations are surprisingly well fit by approximating the inner region by a density profile of NFW or Einasto form, the outer region by a biased version of the linear mass autocorrelation function, and by adopting the maximum of the two where they are comparable. We use a simulation of the formation of galaxies within the Millennium Simulation to explore how these results are reflected in cross-correlations between galaxies and mass. These are directly observable through galaxy-galaxy lensing. Here also we find that simple models can represent the simulation results remarkably well, typically to < 10%. Such models can be used to extend our results to other redshifts, to cosmologies with other parameters, and to other assumptions about how galaxies populate dark haloes. The characteristic features predicted in the galaxy-galaxy lensing signal should provide a strong test of the LCDM cosmology as well as a route to understanding how galaxies form within it.Comment: 14 pages, 15 figures submitted to MNRAS, replaced incorrect figure fil

    Water vapor in the starburst galaxy NGC 253: A new nuclear maser?

    Full text link
    22 GHz water vapor emission was observed toward the central region of the spiral starburst galaxy NGC 253. Monitoring observations with the 100-m telescope at Effelsberg and measurements with the BnC array of the VLA reveal three distinct velocity components, all of them blueshifted with respect to the systemic velocity. The main component arises from a region close to the dynamical center and is displaced by <1 arcsec from the putative nuclear continuum source. The bulk of this maser component is spread over an area not larger than 70 x 50 mas. Its radial velocity may be explained by masing gas that is part of a nuclear accretion disk or of a counterrotating kinematical subsystem or by gas that is entrained by the nuclear superwind or by an expanding supernova shell. A weaker feature, located 5 arcsec to the northeast, is likely related to an optically obscured site of massive star formation.Comment: 6 pages, 4 Postscript figures, A&A Main Journa

    Exploring the Free Energy Landscape: From Dynamics to Networks and Back

    Get PDF
    The knowledge of the Free Energy Landscape topology is the essential key to understand many biochemical processes. The determination of the conformers of a protein and their basins of attraction takes a central role for studying molecular isomerization reactions. In this work, we present a novel framework to unveil the features of a Free Energy Landscape answering questions such as how many meta-stable conformers are, how the hierarchical relationship among them is, or what the structure and kinetics of the transition paths are. Exploring the landscape by molecular dynamics simulations, the microscopic data of the trajectory are encoded into a Conformational Markov Network. The structure of this graph reveals the regions of the conformational space corresponding to the basins of attraction. In addition, handling the Conformational Markov Network, relevant kinetic magnitudes as dwell times or rate constants, and the hierarchical relationship among basins, complete the global picture of the landscape. We show the power of the analysis studying a toy model of a funnel-like potential and computing efficiently the conformers of a short peptide, the dialanine, paving the way to a systematic study of the Free Energy Landscape in large peptides.Comment: PLoS Computational Biology (in press

    ALMA observations of lensed Herschel sources: testing the dark matter halo paradigm

    Get PDF
    With the advent of wide-area submillimetre surveys, a large number of high-redshift gravitationally lensed dusty star-forming galaxies have been revealed. Because of the simplicity of the selection criteria for candidate lensed sources in such surveys, identified as those with S500 μm > 100 mJy, uncertainties associated with the modelling of the selection function are expunged. The combination of these attributes makes submillimetre surveys ideal for the study of strong lens statistics. We carried out a pilot study of the lensing statistics of submillimetre-selected sources by making observations with the Atacama Large Millimeter Array (ALMA) of a sample of strongly lensed sources selected from surveys carried out with the Herschel Space Observatory. We attempted to reproduce the distribution of image separations for the lensed sources using a halo mass function taken from a numerical simulation that contains both dark matter and baryons. We used three different density distributions, one based on analytical fits to the haloes formed in the EAGLE simulation and two density distributions [Singular Isothermal Sphere (SIS) and SISSA] that have been used before in lensing studies. We found that we could reproduce the observed distribution with all three density distributions, as long as we imposed an upper mass transition of ∼1013 M⊙ for the SIS and SISSA models, above which we assumed that the density distribution could be represented by a Navarro–Frenk–White profile. We show that we would need a sample of ∼500 lensed sources to distinguish between the density distributions, which is practical given the predicted number of lensed sources in the Herschel surveys

    Satellite abundances around bright isolated galaxies

    Full text link
    We study satellite galaxy abundances in SDSS by counting photometric galaxies around isolated bright primaries. We present results as a function of the luminosity, stellar mass and colour of the satellites, and of the stellar mass and colour of the primaries. For massive primaries the luminosity and stellar mass functions of satellites are similar in shape to those of field galaxies, but for lower mass primaries they are significantly steeper. The steepening is particularly marked for the stellar mass function. Satellite abundance increases strongly with primary stellar mass, approximately in proportion to expected dark halo mass. Massive red primaries have up to a factor of 2 more satellites than blue ones of the same stellar mass. Satellite galaxies are systematically redder than field galaxies of the same stellar mass. Satellites are also systematically redder around more massive primaries. At fixed primary mass, they are redder around red primaries. We select similarly isolated galaxies from mock catalogues based on the simulations of Guo et al.(2011) and analyze them in parallel with the SDSS data. The simulation reproduces all the above trends qualitatively, except for the steepening of the satellite luminosity and stellar mass functions. Model satellites, however, are systematically redder than in the SDSS, particularly at low mass and around low-mass primaries. Simulated haloes of a given mass have satellite abundances that are independent of central galaxy colour, but red centrals tend to have lower stellar masses, reflecting earlier quenching of their star formation by feedback. This explains the correlation between satellite abundance and primary colour in the simulation. The correlation between satellite colour and primary colour arises because red centrals live in haloes which are more massive, older and more gas-rich, so that satellite quenching is more efficient.Comment: 29 pages, 24 figure

    The Energy Landscape, Folding Pathways and the Kinetics of a Knotted Protein

    Get PDF
    The folding pathway and rate coefficients of the folding of a knotted protein are calculated for a potential energy function with minimal energetic frustration. A kinetic transition network is constructed using the discrete path sampling approach, and the resulting potential energy surface is visualized by constructing disconnectivity graphs. Owing to topological constraints, the low-lying portion of the landscape consists of three distinct regions, corresponding to the native knotted state and to configurations where either the N- or C-terminus is not yet folded into the knot. The fastest folding pathways from denatured states exhibit early formation of the N-terminus portion of the knot and a rate-determining step where the C-terminus is incorporated. The low-lying minima with the N-terminus knotted and the C-terminus free therefore constitute an off-pathway intermediate for this model. The insertion of both the N- and C-termini into the knot occur late in the folding process, creating large energy barriers that are the rate limiting steps in the folding process. When compared to other protein folding proteins of a similar length, this system folds over six orders of magnitude more slowly.Comment: 19 page
    corecore