231 research outputs found

    Promoting Equity and Assuring Teaching and Learning Quality: Magisterial Lectures in a Philippine University during the COVID-19 Pandemic

    Get PDF
    When the COVID-19 pandemic forced universities to shift to online learning, one of the challenges to faculty and administrators was to provide students with high-quality, curriculum-based learning materials that could be accessed despite students’ variable levels of Internet access. Part of the Ateneo de Manila University’s response to this challenge is the production of the Magisterial Lectures, an Open Educational Resource (OER) series of video lectures by some of the University’s most respected faculty members. The goals of this paper are to describe how the production of the lectures was guided by the principles of quality and equity; to discuss the use and reach of the lectures based on YouTube analytics and a survey of Ateneo students and teachers; and to measure the impact of the lectures on students’ learning experience. We enact quality in terms of curricular alignment and high production value. Equity was achieved by making the resource available publicly, free of charge. We found that the videos reached over 350,000 viewers in 37 countries. A survey of Ateneo students and teachers, the primary beneficiaries, shows that these materials were effective educational tools. Their effectiveness is attributable to the grounding of the production in quality and equity; the teachers’ careful integration of the recordings in their lessons; and the students’ engagement with the lectures following their own learning preferences and strategies

    Diet-Related Metabolites Associated with Cognitive Decline Revealed by Untargeted Metabolomics in a Prospective Cohort

    Get PDF
    Scope: Untargeted metabolomics may reveal preventive targets in cognitive aging, including within the food metabolome. Methods and results: A case-control study nested in the prospective Three-City study includes participants aged &65 years and initially free of dementia. A total of 209 cases of cognitive decline and 209 controls (matched for age, gen- der, education) with slower cognitive decline over up to 12 years are contrasted. Using untargeted metabolomics and bootstrap-enhanced penalized regression, a baseline serum signature of 22 metabolites associated with subsequent cognitive decline is identified. The signature includes three coffee metabolites, a biomarker of citrus intake, a cocoa metabolite, two metabolites putatively derived from fish and wine, three medium-chain acylcarnitines, glycodeoxycholic acid, lysoPC(18:3), trimethyllysine, glucose, cortisol, creatinine, and arginine. Adding the 22 metabolites to a reference predictive model for cognitive decline (conditioned on age, gender, education and including ApoE-ε4, diabetes, BMI, and number of medications) substantially increases the predictive performance: cross-validated Area Under the Receiver Operating Curve = 75% [95% CI 70-80%] compared to 62% [95% CI 56-67%]. Conclusions: The untargeted metabolomics study supports a protective role of specific foods (e.g., coffee, cocoa, fish) and various alterations in the endogenous metabolism responsive to diet in cognitive aging

    HIV Transmission Potential Among Local and Migrant Factory Workers in Kolkata, India

    Get PDF
    Migrant workers in India play a key role in the spread of HIV. Kolkata is a common destination for workers, who may acquire infection and transmit it to their wives and/or other sexual partners. We investigated sexual relations and condom use by factory workers. Migrant and local factory workers were randomly selected from five wards of Kolkata. Information was collected about demographic and socio-economic characteristics, sexual relationships, condom usage, and perceptions and intent to use condoms. Condom use was very low in both groups of workers, particularly among migrants. Many married workers visited female sex workers but never used condoms. Few intended to use condoms, and if they did, it did not always translate into actual usage. There is great potential for transmission of HIV/sexually transmitted infections by these workers. Carefully designed intervention and education programs in the context of low literacy and cultural norms are urgently needed

    Selective auxin agonists induce specific AUX/IAA protein degradation to modulate plant development.

    Get PDF
    Auxin phytohormones control most aspects of plant development through a complex and interconnected signaling network. In the presence of auxin, AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) transcriptional repressors are targeted for degradation by the SKP1-CULLIN1-F-BOX (SCF) ubiquitin-protein ligases containing TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB). CULLIN1-neddylation is required for SCFTIR1/AFB functionality, as exemplified by mutants deficient in the NEDD8-activating enzyme subunit AUXIN-RESISTANT 1 (AXR1). Here, we report a chemical biology screen that identifies small molecules requiring AXR1 to modulate plant development. We selected four molecules of interest, RubNeddin 1 to 4 (RN1 to -4), among which RN3 and RN4 trigger selective auxin responses at transcriptional, biochemical, and morphological levels. This selective activity is explained by their ability to consistently promote the interaction between TIR1 and a specific subset of AUX/IAA proteins, stimulating the degradation of particular AUX/IAA combinations. Finally, we performed a genetic screen using RN4, the RN with the greatest potential for dissecting auxin perception, which revealed that the chromatin remodeling ATPase BRAHMA is implicated in auxin-mediated apical hook development. These results demonstrate the power of selective auxin agonists to dissect auxin perception for plant developmental functions, as well as offering opportunities to discover new molecular players involved in auxin responses

    Positional Signaling and Expression of ENHANCER OF TRY AND CPC1 Are Tuned to Increase Root Hair Density in Response Phosphate Deficiency in Arabidopsis thaliana

    Get PDF
    Phosphate (Pi) deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana), we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC), ENHANCER OF TRY AND CPC 1 (ETC1), WEREWOLF (WER) and SCRAMBLED (SCM). From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal (‘cortical bias’) in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts). Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1

    AGO1 and AGO2 Act Redundantly in miR408-Mediated Plantacyanin Regulation

    Get PDF
    Background: In Arabidopsis, AGO1 and AGO2 associate with small RNAs that exhibit a Uridine and an Adenosine at their 59 end, respectively. Because most plant miRNAs have a 59U, AGO1 plays many essential roles in miRNA-mediated regulation of development and stress responses. In contrast, AGO2 has only been implicated in antibacterial defense in association with miR393*, which has a 59A. AGO2 also participates in antiviral defense in association with viral siRNAs. Principal Findings: This study reveals that miR408, which has a 59A, regulates its target Plantacyanin through either AGO1 or AGO2. Indeed, neither ago1 nor ago2 single mutations abolish miR408-mediated regulation of Plantacyanin. Only an ago1 ago2 double mutant appears compromised in miR408-mediated regulation of Plantacyanin, suggesting that AGO1 and AGO2 have redundant roles in this regulation. Moreover, the nature of the 59 nucleotide of miR408 does not appear essential for its regulatory role because both a wildtype 59A-MIR408 and a mutant 59U-MIR408 gene complement a mir408 mutant. Conclusions/Significance: These results suggest that miR408 associates with both AGO1 and AGO2 based on criteria that differ from the 59 end rule, reminiscent of miR390-AGO7 and miR165/166-AGO10 associations, which are not based on the nature of the 59 nucleotide

    Systems-wide analysis of manganese deficiency-induced changes in gene activity of Arabidopsis roots

    Get PDF
    Manganese (Mn) is pivotal for plant growth and development, but little information is available regarding the strategies that evolved to improve Mn acquisition and cellular homeostasis of Mn. Using an integrated RNA-based transcriptomic and high-throughput shotgun proteomics approach, we generated a comprehensive inventory of transcripts and proteins that showed altered abundance in response to Mn deficiency in roots of the model plant Arabidopsis. A suite of 22,385 transcripts was consistently detected in three RNA-seq runs; LC-MS/MS-based iTRAQ proteomics allowed the unambiguous determination of 11,606 proteins. While high concordance between mRNA and protein expression (R = 0.87) was observed for transcript/protein pairs in which both gene products accumulated differentially upon Mn deficiency, only approximately 10% of the total alterations in the abundance of proteins could be attributed to transcription, indicating a large impact of protein-level regulation. Differentially expressed genes spanned a wide range of biological functions, including the maturation, translation, and transport of mRNAs, as well as primary and secondary metabolic processes. Metabolic analysis by UPLC-qTOF-MS revealed that the steady-state levels of several major glucosinolates were significantly altered upon Mn deficiency in both roots and leaves, possibly as a compensation for increased pathogen susceptibility under conditions of Mn deficiency

    Photodegradation of the Mycobacterium ulcerans Toxin, Mycolactones: Considerations for Handling and Storage

    Get PDF
    Background: Mycolactones are toxins secreted by M. ulcerans, the etiological agent of Buruli ulcer. These toxins, which are the main virulence factors of the bacilli, are responsible for skin lesions. Considering their specificity for M. ulcerans and their presence in skin lesions even at early stages, mycolactones are promising candidates for the development of a diagnostic tool for M. ulcerans infection. Stability of purified mycolactones towards light and heat has not yet been investigated, despite the importance of such parameters in the selection of strategies for a diagnosis tool development. In this context, the effects of UV, light and temperature on mycolactone stability and biological activity were studied. Methodology/Principal Findings: To investigate the effect of these physical parameters, mycolactones were exposed to different wavelengths in several solvents and temperatures. Structural changes and biological activity were monitored. Whilst high temperature had no effect on mycolactones, UV irradiation (UV-A, UV-B and UV-C) and sunlight exposure caused a considerable degradation, as revealed by LC-MS and NMR analysis, correlated with a loss of biological activity. Moreover, effect of UVs on mycolactone caused a photodegradation rather than a phototransformation due to the identification of degradation product. Conclusion/Significance: This study demonstrates the high sensitivity of mycolactones to UVs as such it defines instruction

    The influence of religious identity and socio-economic status on diet over time, an example from medieval France

    Get PDF
    In Southern France as in other parts of Europe, significant changes occurred in settlement patterns between the end of Antiquity and the beginning of the Middle Ages. Small communities gathered to form, by the tenth century, villages organized around a church. This development was the result of a new social and agrarian organization. Its impact on lifestyles and, more precisely, on diet is still poorly understood. The analysis of carbon and nitrogen isotopes in bone collagen from the inhabitants of the well-preserved medieval rural site Missignac-Saint Gilles le Vieux (fifth to thirteenth centuries, Gard, France) provides insight into their dietary practices and enables a discussion about its transformation over time. A sample of 152 adult individuals dated from 675 to 1175 AD (75 females, 77 males) and 75 specimens from 16 non-human species were analyzed. Results show the exploitation of freshwater, marine, and terrestrial ecosystems as well as various breeding practices specific to each species. The use of both C4 and halophyte plants for feeding domestic animals was also observed. Concerning human dietary practices, a change seemed to occur at the beginning of the tenth century with an increase of δ15N values and a decrease of δ13C values. This corresponds to the introduction of a significant amount of freshwater resources into the diet and could be related to the evolution of the Catholic doctrine. A concomitant diversification of access to individual food resources was also observed, probably linked to the increased diversity of practice inside a population otherwise perceived as one community
    corecore