113 research outputs found

    Pathogenesis of progressive scarring trachoma in Ethiopia and Tanzania and its implications for disease control: two cohort studies.

    Get PDF
    BACKGROUND: Trachoma causes blindness through a conjunctival scarring process initiated by ocular Chlamydia trachomatis infection; however, the rates, drivers and pathophysiological determinants are poorly understood. We investigated progressive scarring and its relationship to conjunctival infection, inflammation and transcript levels of cytokines and fibrogenic factors. METHODOLOGY/PRINCIPAL FINDINGS: We recruited two cohorts, one each in Ethiopia and Tanzania, of individuals with established trachomatous conjunctival scarring. They were followed six-monthly for two years, with clinical examinations and conjunctival swab sample collection. Progressive scarring cases were identified by comparing baseline and two-year photographs, and compared to individuals without progression. Samples were tested for C. trachomatis by PCR and transcript levels of S100A7, IL1B, IL13, IL17A, CXCL5, CTGF, SPARCL1, CEACAM5, MMP7, MMP9 and CD83 were estimated by quantitative RT-PCR. Progressive scarring was found in 135/585 (23.1%) of Ethiopian participants and 173/577 (30.0%) of Tanzanian participants. There was a strong relationship between progressive scarring and increasing inflammatory episodes (Ethiopia: OR 5.93, 95%CI 3.31-10.6, p<0.0001. Tanzania: OR 5.76, 95%CI 2.60-12.7, p<0.0001). No episodes of C. trachomatis infection were detected in the Ethiopian cohort and only 5 episodes in the Tanzanian cohort. Clinical inflammation, but not scarring progression, was associated with increased expression of S100A7, IL1B, IL17A, CXCL5, CTGF, CEACAM5, MMP7, CD83 and reduced SPARCL1. CONCLUSIONS/SIGNIFICANCE: Scarring progressed in the absence of detectable C. trachomatis, which raises uncertainty about the primary drivers of late-stage trachoma. Chronic conjunctival inflammation appears to be central and is associated with enriched expression of pro-inflammatory factors and altered expression of extracellular matrix regulators. Host determinants of scarring progression appear more complex and subtle than the features of inflammation. Overall this indicates a potential role for anti-inflammatory interventions to interrupt progression and the need for trichiasis disease surveillance and surgery long after chlamydial infection has been controlled at community level

    Ocular Application of the Kinin B1 Receptor Antagonist LF22-0542 Inhibits Retinal Inflammation and Oxidative Stress in Streptozotocin-Diabetic Rats

    Get PDF
    Purpose: Kinin B1 receptor (B1R) is upregulated in retina of Streptozotocin (STZ)-diabetic rats and contributes to vasodilation of retinal microvessels and breakdown of the blood-retinal barrier. Systemic treatment with B 1R antagonists reversed the increased retinal plasma extravasation in STZ rats. The present study aims at determining whether ocular application of a water soluble B1R antagonist could reverse diabetes-induced retinal inflammation and oxidative stress. Methods: Wistar rats were made diabetic with STZ (65 mg/kg, i.p.) and 7 days later, they received one eye drop application of LF22-0542 (1 % in saline) twice a day for a 7 day-period. The impact was determined on retinal vascular permeability (Evans blue exudation), leukostasis (leukocyte infiltration using Fluorescein-isothiocyanate (FITC)-coupled Concanavalin A lectin), retinal mRNA levels (by qRT-PCR) of inflammatory (B1R, iNOS, COX-2, ICAM-1, VEGF-A, VEGF receptor type 2, IL-1b and HIF-1a) and anti-inflammatory (B2R, eNOS) markers and retinal level of superoxide anion (dihydroethidium staining). Results: Retinal plasma extravasation, leukostasis and mRNA levels of B 1R, iNOS, COX-2, VEGF receptor type 2, IL-1b and HIF-1a were significantly increased in diabetic retinae compared to control rats. All these abnormalities were reversed to control values in diabetic rats treated with LF22-0542. B1R antagonist also significantly inhibited the increased production of superoxide anion in diabetic retinae. Conclusion: B1R displays a pathological role in the early stage of diabetes by increasing oxidative stress and proinflammator

    Prediction of diabetic retinopathy: role of oxidative stress and relevance of apoptotic biomarkers

    Full text link

    Neuropeptides, Trophic Factors, and Other Substances Providing Morphofunctional and Metabolic Protection in Experimental Models of Diabetic Retinopathy

    Get PDF
    Vision is the most important sensory modality for many species, including humans. Damage to the retina results in vision loss or even blindness. One of the most serious complications of diabetes, a disease that has seen a worldwide increase in prevalence, is diabetic retinopathy. This condition stems from consequences of pathological metabolism and develops in 75% of patients with type 1 and 50% with type 2 diabetes. The development of novel protective drugs is essential. In this review we provide a description of the disease and conclude that type 1 diabetes and type 2 diabetes lead to the same retinopathy. We evaluate existing experimental models and recent developments in finding effective compounds against this disorder. In our opinion, the best models are the long-term streptozotocin-induced diabetes and Otsuka Long-Evans Tokushima Fatty and spontaneously diabetic Torii rats, while the most promising substances are topically administered somatostatin and pigment epithelium-derived factor analogs, antivasculogenic substances, and systemic antioxidants. Future drug development should focus on these

    Survivin, a molecular target for therapeutic interventions in squamous cell carcinoma

    Full text link
    corecore