364 research outputs found

    Inverse seesaw and dark matter in models with exotic lepton triplets

    Get PDF
    We show that models with exotic leptons transforming as E ~ (1,3,-1) under the standard model gauge symmetry are well suited for generating neutrino mass via a radiative inverse seesaw. This approach realizes natural neutrino masses and allows multiple new states to appear at the TeV scale. The exotic leptons are therefore good candidates for new physics that can be probed at the LHC. Furthermore, remnant low-energy symmetries ensure a stable dark matter candidate, providing a link between dark matter and the origins of neutrino mass.Comment: 6 pages, 3 figures (revtex4.1, two-columns

    Inert Dark Matter and Strong Electroweak Phase Transition

    Full text link
    The main virtue of the Inert Doublet Model (IDM) is that one of its spinless neutral bosons can play the role of Dark Matter. Assuming that the additional sources of CP violation are present in the form of higher dimensional operator(s) we reexamine the possibility that the model parameters for which the right number density of relic particles is predicted are compatible with the first order phase transition that could lead to electroweak baryogenesis. We find, taking into account recent indications from the LHC and the constraints from the electroweak precision data, that for a light DM (40-60 GeV) particle and heavy almost degenerate additional scalars H±H^\pm and A0A^0 this is indeed possible but the two parameters most important for the strength of the phase transition: the common mass of H±H^\pm and A0A^0 and the trilinear coupling of the Higgs-like particle to DM are strongly constrained. H±H^\pm and A0A^0 must weight less than 440\sim440 GeV if the inert minimum is to be the lowest one and the value of the coupling is limited by the XENON 100 data. We stress the important role of the zero temperature part of the potential for the strength of the phase transition.Comment: 15 pages, 5 figures, minor chnges, comment on h-->2gamma adde

    Systematics of two-component superconductivity in YBa2Cu3O6.95YBa_{2}Cu_{3}O_{6.95} from microwave measurements of high quality single crystals

    Full text link
    Systematic microwave surface impedance measurements of YBCO single crystals grown in BaZrO3BaZrO_3 crucibles reveal new properties that are not directly seen in similar measurements of other YBCO samples. Two key observations obtained from complex conductivity are: a new normal conductivity peak at around 80K and additional pairing below 65K. High pressure oxygenation of one of the crystals still yields the same results ruling out any effect of macroscopic segregation of O-deficient regions. A single complex order parameter cannot describe these data, and the results suggest at least two superconducting components. Comparisons with model calculations done for various decoupled two-component scenarios (i.e. s+d, d+d) are presented. Systematics of three single crystals show that the 80K quasiparticle peak is correlated with the normal state inelastic scattering rate. Close to Tc, the data follow a mean-field behavior. Overall, our results strongly suggest the presence of multiple pairing temperature and energy scales in YBa2Cu3O6.95YBa_{2}Cu_{3}O_{6.95}.Comment: 14 pages, 2-column, Revtex, 5 embedded postscript figures, uses graphicx. Postscript version also available at http://sagar.physics.neu.edu/preprints.htm

    Dark Matter and Neutrino Masses from Global U(1)BLU(1)_{B-L} Symmetry Breaking

    Get PDF
    We present a scenario where neutrino masses and Dark Matter are related due to a global U(1)BLU(1)_{B-L} symmetry. Specifically we consider neutrino mass generation via the Zee--Babu two-loop mechanism, augmented by a scalar singlet whose VEV breaks the global U(1)BLU(1)_{B-L} symmetry. In order to obtain a Dark Matter candidate we introduce two Standard Model singlet fermions. They form a Dirac particle and are stable because of a remnant Z2Z_2 symmetry. Hence, in this model the stability of Dark Matter follows from the global U(1)BLU(1)_{B-L} symmetry. We discuss the Dark Matter phenomenology of the model, and compare it to similar models based on gauged U(1)BLU(1)_{B-L}. We argue that in contrast to the gauged versions, the model based on the global symmetry does not suffer from severe constraints from ZZ' searches.Comment: minor improvements, matches published versio

    Asymmetric Inelastic Inert Doublet Dark Matter from Triplet Scalar Leptogenesis

    Full text link
    The nature of dark matter (DM) particles and the mechanism that provides their measured relic abundance are currently unknown. In this paper we investigate inert scalar and vector like fermion doublet DM candidates with a charge asymmetry in the dark sector, which is generated by the same mechanism that provides the baryon asymmetry, namely baryogenesis-via-leptogenesis induced by decays of scalar triplets. At the same time the model gives rise to neutrino masses in the ballpark of oscillation experiments via type II seesaw. We discuss possible sources of depletion of asymmetry in the DM and visible sectors and solve the relevant Boltzmann equations for quasi-equilibrium decay of triplet scalars. A Monte-Carlo-Markov-Chain analysis is performed for the whole parameter space. The survival of the asymmetry in the dark sector leads to inelastic scattering off nuclei. We then apply bayesian statistic to infer the model parameters favoured by the current experimental data, in particular the DAMA annual modulation and Xenon100 exclusion limit. The latter strongly disfavours asymmetric scalar doublet DM of mass \mathcal{O}(\TeV) as required by DM-DMˉ\bar{\rm DM} oscillations, while an asymmetric vector like fermion doublet DM with mass around 100 GeV is a good candidate for DAMA annual modulation yet satisfying the constraints from Xenon100 data.Comment: 35 pages and 15 figures, references adde

    Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology

    Full text link
    We study phenomenological implications of the ATLAS and CMS hint of a 125±1125\pm 1 GeV Higgs boson for the singlet, and singlet plus doublet non-supersymmetric dark matter models, and for the phenomenology of the CMSSM. We show that in scalar dark matter models the vacuum stability bound on Higgs boson mass is lower than in the standard model and the 125 GeV Higgs boson is consistent with the models being valid up the GUT or Planck scale. We perform a detailed study of the full CMSSM parameter space keeping the Higgs boson mass fixed to 125±1125\pm 1 GeV, and study in detail the freeze-out processes that imply the observed amount of dark matter. After imposing all phenomenological constraints except for the muon (g2)μ,(g-2)_\mu, we show that the CMSSM parameter space is divided into well separated regions with distinctive but in general heavy sparticle mass spectra. Imposing the (g2)μ(g-2)_\mu constraint introduces severe tension between the high SUSY scale and the experimental measurements -- only the slepton co-annihilation region survives with potentially testable sparticle masses at the LHC. In the latter case the spin-independent DM-nucleon scattering cross section is predicted to be below detectable limit at the XENON100 but might be of measurable magnitude in the general case of light dark matter with large bino-higgsino mixing and unobservably large scalar masses.Comment: 17 pages, 7 figures. v3: same as published versio

    WIMP-nucleus scattering in chiral effective theory

    Full text link
    We discuss long-distance QCD corrections to the WIMP-nucleon(s) interactions in the framework of chiral effective theory. For scalar-mediated WIMP-quark interactions, we calculate all the next-to-leading-order corrections to the WIMP-nucleus elastic cross-section, including two-nucleon amplitudes and recoil-energy dependent shifts to the single-nucleon scalar form factors. As a consequence, the scalar-mediated WIMP-nucleus cross-section cannot be parameterized in terms of just two quantities, namely the neutron and proton scalar form factors at zero momentum transfer, but additional parameters appear, depending on the short-distance WIMP-quark interaction. Moreover, multiplicative factorization of the cross-section into particle, nuclear and astro-particle parts is violated. In practice, while the new effects are of the natural size expected by chiral power counting, they become very important in those regions of parameter space where the leading order WIMP-nucleus amplitude is suppressed, including the so-called "isospin-violating dark matter" regime. In these regions of parameter space we find order-of-magnitude corrections to the total scattering rates and qualitative changes to the shape of recoil spectra.Comment: 23 pages, 6 figures, 1 tabl

    The St\"{u}ckelberg Holographic Superconductors with Weyl corrections

    Get PDF
    In this letter we construct the St\"{u}ckelberg holographic superconductor with Weyl corrections. Under such corrections, the Weyl coupling parameter γ\gamma plays an important role in the order of phase transitions and the critical exponents of second order phase transitions. So do the model parameters cαc_{\alpha}, α\alpha and c4c_{4}. Moreover, we show that the Weyl coupling parameter γ\gamma and the model parameters cαc_{\alpha}, α\alpha, c4c_{4} which together control the size and strength of the conductivity coherence peak and the ratio of gap frequency over critical temperature ωg/Tc\omega_{g}/T_{c}.Comment: 18 pages, 6 figure

    Unifying darko-lepto-genesis with scalar triplet inflation

    Get PDF
    We present a scalar triplet extension of the standard model to unify the origin of inflation with neutrino mass, asymmetric dark matter and leptogenesis. In presence of non-minimal couplings to gravity the scalar triplet, mixed with the standard model Higgs, plays the role of inflaton in the early Universe, while its decay to SM Higgs, lepton and dark matter simultaneously generate an asymmetry in the visible and dark matter sectors. On the other hand, in the low energy effective theory the induced vacuum expectation value of the triplet gives sub-eV Majorana masses to active neutrinos. We investigate the model parameter space leading to successful inflation as well as the observed dark matter to baryon abundance. Assuming the standard model like Higgs mass to be at 125-126 GeV, we found that the mass scale of the scalar triplet to be ~ O(10^9) GeV and its trilinear coupling to doublet Higgs is ~ 0.09 so that it not only evades the possibility of having a metastable vacuum in the standard model, but also lead to a rich phenomenological consequences as stated above. Moreover, we found that the scalar triplet inflation strongly constrains the quartic couplings, while allowing for a wide range of Yukawa couplings which generate the CP asymmetries in the visible and dark matter sectors.Comment: (v1) 29 pages, 11 figures; (v2) 30 pages, 1 figure added and discussions expanded, to appear in Nuclear Physics

    Dark matter scenarios in the minimal SUSY B-L model

    Full text link
    We perform a study of the dark matter candidates of a constrained version of the minimal R-parity-conserving supersymmetric model with a gauged U(1)BLU(1)_{B-L}. It turns out that there are four additional candidates for dark matter in comparison to the MSSM: two kinds of neutralino, which either correspond to the gaugino of the U(1)BLU(1)_{B-L} or to a fermionic bilepton, as well as "right-handed" CP-even and -odd sneutrinos. The correct dark matter relic density of the neutralinos can be obtained due to different mechanisms including new co-annihilation regions and resonances. The large additional Yukawa couplings required to break the U(1)BLU(1)_{B-L} radiatively often lead to large annihilation cross sections for the sneutrinos. The correct treatment of gauge kinetic mixing is crucial to the success of some scenarios. All candidates are consistent with the exclusion limits of Xenon100.Comment: 45 pages, 22 figures; v2: extended discussion of direct detection cross section, matches published versio
    corecore