We discuss long-distance QCD corrections to the WIMP-nucleon(s) interactions
in the framework of chiral effective theory. For scalar-mediated WIMP-quark
interactions, we calculate all the next-to-leading-order corrections to the
WIMP-nucleus elastic cross-section, including two-nucleon amplitudes and
recoil-energy dependent shifts to the single-nucleon scalar form factors. As a
consequence, the scalar-mediated WIMP-nucleus cross-section cannot be
parameterized in terms of just two quantities, namely the neutron and proton
scalar form factors at zero momentum transfer, but additional parameters
appear, depending on the short-distance WIMP-quark interaction. Moreover,
multiplicative factorization of the cross-section into particle, nuclear and
astro-particle parts is violated. In practice, while the new effects are of the
natural size expected by chiral power counting, they become very important in
those regions of parameter space where the leading order WIMP-nucleus amplitude
is suppressed, including the so-called "isospin-violating dark matter" regime.
In these regions of parameter space we find order-of-magnitude corrections to
the total scattering rates and qualitative changes to the shape of recoil
spectra.Comment: 23 pages, 6 figures, 1 tabl