54 research outputs found

    Search for single top quarks in the tau+jets channel using 4.8 fb1^{-1} of ppˉp\bar{p} collision data

    Get PDF
    We present the first direct search for single top quark production using tau leptons. The search is based on 4.8 fb1^{-1} of integrated luminosity collected in ppˉp\bar{p} collisions at s\sqrt{s}=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. We select events with a final state including an isolated tau lepton, missing transverse energy, two or three jets, one or two of them bb tagged. We use a multivariate technique to discriminate signal from background. The number of events observed in data in this final state is consistent with the signal plus background expectation. We set in the tau+jets channel an upper limit on the single top quark cross section of \TauLimObs pb at the 95% C.L. This measurement allows a gain of 4% in expected sensitivity for the observation of single top production when combining it with electron+jets and muon+jets channels already published by the D0 collaboration with 2.3 fb1^{-1} of data. We measure a combined cross section of \SuperCombineXSall pb, which is the most precise measurement to date.Comment: 12 pages, 5 figure

    b-Jet Identification in the D0 Experiment

    Get PDF
    Algorithms distinguishing jets originating from b quarks from other jet flavors are important tools in the physics program of the D0 experiment at the Fermilab Tevatron p-pbar collider. This article describes the methods that have been used to identify b-quark jets, exploiting in particular the long lifetimes of b-flavored hadrons, and the calibration of the performance of these algorithms based on collider data.Comment: submitted to Nuclear Instruments and Methods in Physics Research

    Measurement of the dijet invariant mass cross section in proton anti-proton collisions at sqrt{s} = 1.96 TeV

    Get PDF
    The inclusive dijet production double differential cross section as a function of the dijet invariant mass and of the largest absolute rapidity of the two jets with the largest transverse momentum in an event is measured in proton anti-proton collisions at sqrt{s} = 1.96 TeV using 0.7 fb^{-1} integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The measurement is performed in six rapidity regions up to a maximum rapidity of 2.4. Next-to-leading order perturbative QCD predictions are found to be in agreement with the data.Comment: Published in Phys. Lett. B, 693, (2010), 531-538, 8 pages, 2 figures, 6 table

    Measurement of Z/gamma*+jet+X angular distributions in ppbar collisions at sqrt{s}=1.96 TeV

    Get PDF
    We present the first measurements at a hadron collider of differential cross sections for Z+jet+X production in delta phi(Z, jet), |delta y(Z, jet)| and |y_boost(Z, jet)|. Vector boson production in association with jets is an excellent probe of QCD and constitutes the main background to many small cross section processes, such as associated Higgs production. These measurements are crucial tests of the predictions of perturbative QCD and current event generators, which have varied success in describing the data. Using these measurements as inputs in tuning event generators will increase the experimental sensitivity to rare signals.Comment: Published in Physics Letters B 682 (2010), pp. 370-380. 15 pages, 6 figure

    Search for the standard model Higgs boson in tau final states

    Get PDF
    We present a search for the standard model Higgs boson using hadronically decaying tau leptons, in 1 inverse femtobarn of data collected with the D0 detector at the Fermilab Tevatron ppbar collider. We select two final states: tau plus missing transverse energy and b jets, and tau+ tau- plus jets. These final states are sensitive to a combination of associated W/Z boson plus Higgs boson, vector boson fusion and gluon-gluon fusion production processes. The observed ratio of the combined limit on the Higgs production cross section at the 95% C.L. to the standard model expectation is 29 for a Higgs boson mass of 115 GeV.Comment: publication versio

    Search for scalar bottom quarks and third-generation leptoquarks in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We report the results of a search for pair production of scalar bottom quarks (sbottom) and scalar third-generation leptoquarks in 5.2 fb-1 of ppbar collisions at the D0 experiment of the Fermilab Tevatron Collider. Scalar bottom quarks are assumed to decay to a neutralino and a bb quark, and we set 95% C.L. lower limits on their production in the (m_sbottom, m_neutralino) mass plane such as m_sbottom>247 GeV for m_neutralino=0 and m_neutralino>110 GeV for 160<m_sbottom<200 GeV. The leptoquarks are assumed to decay to a tau neutrino and a bb quark, and we set a 95% C.L. lower limit of 247 GeV on the mass of a charge-1/3 third-generation scalar leptoquark.Comment: Published by Phys. Lett.

    Search for charged Higgs bosons in top quark decays

    Full text link
    We present a search for charged Higgs bosons in top quark decays. We analyze the \eplus, \muplus, eeee, eμe\mu, μμ\mu\mu, \etau and \mutau final states from top quark pair production events, using data from about 1fb1{\text{fb}}^{-1} of integrated luminosity recorded by the \dzero experiment at the Fermilab Tevatron Collider. We consider different scenarios of possible charged Higgs boson decays, one where the charged Higgs boson decays purely hadronically into a charm and a strange quark, another where it decays into a τ\tau lepton and a τ\tau neutrino and a third one where both decays appear. We extract limits on the branching ratio B(tH+b)B(t\to H^+ b) for all these models. We use two methods, one where the ttˉt\bar{t} production cross section is fixed, and one where the cross section is fitted simultaneously with B(tH+b)B(t\to H^+b). Based on the extracted limits, we exclude regions in the charged Higgs boson mass and tanβ\tan \beta parameter space for different scenarios of the minimal supersymmetric standard model.Comment: 10 pages, 8 figures, submitted to PL

    Measurement of the WZνWZ\rightarrow \ell\nu\ell\ell cross section and limits on anomalous triple gauge couplings in ppˉp\bar{p} collisions at s\sqrt{s} = 1.96 TeV

    Get PDF
    We present a new measurement of the WZνWZ\rightarrow \ell\nu\ell\ell (=e,μ\ell = e,\mu) cross section and limits on anomalous triple gauge couplings. Using 4.1 fb1^{-1} of integrated luminosity of ppˉp\bar{p} collisions at s=1.96\sqrt{s} = 1.96 TeV, we observe 34 WZWZ candidate events with an estimated background of 6.0±0.46.0 \pm 0.4 events. We measure the WZWZ production cross section to be 3.900.90+1.063.90^{+1.06}_{-0.90} pb, in good agreement with the standard model prediction. We find no evidence for anomalous WWZWWZ couplings and set 95% C.L. limits on the coupling parameters, 0.075<λZ<0.093-0.075 < \lambda_{Z} < 0.093 and 0.027<ΔκZ<0.080-0.027 < \Delta\kappa_{Z} < 0.080, in the HISZ parameterization for a Λ=2\Lambda = 2 TeV form factor scale. These are the best limits to date obtained from the direct measurement of the WWZWWZ vertex.Comment: 8 pages, 7 figures, 2 table

    Measurement of the ttbar production cross section and top quark mass extraction using dilepton events in ppbar collisions

    Get PDF
    We present a measurement of the top quark pair production cross section in ppbar collisions at \sqrt{s}=1.96 TeV using approximately 1 fb^{-1} of data collected with the D0 detector. We consider decay channels containing two high pt charged leptons where one lepton is identified as an electron or a muon while the other lepton can be an electron, a muon or a hadronically decaying tau lepton. For a mass of the top quark of 170 GeV, the measured cross section is 7.5 +1.0-1.0 (stat) +0.7-0.6 (syst) +0.6-0.5 (lumi) pb. Using lepton+tau events only, we measure: \sigma_ttbar \times B(ttbar to ltau bbbar) = 0.13 +0.09-0.08 (stat) +0.06-0.06 (syst) +0.02-0.02 (lumi) pb. Comparing the measured cross section as a function of the mass of the top quark with a partial next-to-next-to leading order Quantum Chromodynamics theoretical prediction, we extract a mass of the top quark of 171.5 +9.9-8.8 GeV, in agreement with direct measurements.Comment: published in Phys. Lett. B, 10 pages, 7 figure
    corecore