108 research outputs found

    Vortex Lines or Vortex-Line Chains at the Lower Critical Field in Anisotropic Superconductors?

    Full text link
    The vortex state at the lower critical field, H_{c1}, in clean anisotropic superconductors placed in an external field tilted with respect to the axis of anisotropy (c-axis) is considered assuming two possible arrangements: dilute vortex-lines or dilute vortex-line chains. By minimizing the Gibbs free energies in the London limit for each possibility we obtain the corresponding lower critical fields as a function of the tilt angle. The equilibrium configuration at H_{c1} for a given tilt angle is identified with that for which H_{c1} is the smallest. We report results for parameter values typical of strong and moderate anisotropy. We find that for strong anisotropy vortex-line chains are favored for small tilt angles (< 7.9^o) and that at 7.9^o there is coexistence between this configuration and a vortex-line one. For moderate anisotropy we find that there is little difference between the vortex-line and the vortex-chain lower critical fields.Comment: 5 pages, 4 figures, accepted to appear on Physica

    Regular particle acceleration in relativistic jets

    Full text link
    Exact solution is obtained for electromagnetic field around a conducting cylinder of infinite length and finite radius, with a periodical axial current, when the wave length is much larger than the radius of the cylinder. The solution describes simultaneously the fields in the near zone close to the cylinder, and transition to the wave zone. Proper long-wave oscillations of such cylinder are studied. The electromagnetic energy flux from the cylinder is calculated. These solutions could be applied for description of the electromagnetic field around relativistic jets from active galactic nuclei and quasars and particle acceleration inside jets.Comment: 12 pages, 1 figure. To appear in Proc. of the Workshop The Multiwavelength Approach To Unidentified Gamma Ray Sources. The University of Hong Kong - Hong Kong, China, 1-4 June 200

    Relativistic Jets from Accretion Disks

    Full text link
    The jets observed to emanate from many compact accreting objects may arise from the twisting of a magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, hydromagnetic jets, which have a significant mass flux and have energy and angular momentum carried by both matter and electromagnetic field and, Poynting jets, where the mass flux is small and energy and angular momentum are carried predominantly by the electromagnetic field. Here, we describe recent theoretical work on the formation of relativistic Poynting jets from magnetized accretion disks. Further, we describe new relativistic, fully-electromagnetic, particle-in-cell simulations of the formation of jets from accretion disks. Analog Z-pinch experiments may help to understand the origin of astrophysical jets.Comment: 7 pages, 3 figures, Proc. of High Energy Density Astrophysics Conf., 200

    The role of Hall diffusion in the magnetically threaded thin accretion discs

    Full text link
    We study role of the Hall diffusion in the magnetic star-disc interaction. In a simplified steady state configuration, the total torque is calculated in terms of the fastness parameter and a new term because of the Hall diffusion. We show the total torque reduces as the Hall term becomes more significant. Also, the critical fastness parameter (at which the total torque is zero) reduces because of the Hall diffusion.Comment: Accepted for publication in Astrophysics and Space Scienc

    Properties of the Ideal Ginzburg-Landau Vortex Lattice

    Full text link
    The magnetization curves M(H) for ideal type-II superconductors and the maximum, minimum, and saddle point magnetic fields of the vortex lattice are calculated from Ginzburg-Landau theory for the entire ranges of applied magnetic fields Hc1 <= H < Hc2 or inductions 0 <= B < Hc2 and Ginzburg-Landau parameters sqrt(1/2) <= kappa <= 1000. Results for the triangular and square flux-line lattices are compared with the results of the circular cell approximation. The exact magnetic field B(x,y) and magnetization M(H, kappa) are compared with often used approximate expressions, some of which deviate considerably or have limited validity. Useful limiting expressions and analytical interpolation formulas are presented.Comment: 11 pages, 8 figure

    Accretion, Outflows, and Winds of Magnetized Stars

    Full text link
    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars are radiatively driven. In all of these cases, the magnetic field influences matter flow from the stars and determines many observational properties. In this chapter we review recent studies of accretion, outflows, and winds of magnetized stars with a focus on three main topics: (1) accretion onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and (3) winds from isolated massive magnetized stars. We show results obtained from global magnetohydrodynamic simulations and, in a number of cases compare global simulations with observations.Comment: 60 pages, 44 figure

    Statefinder Parameter for Varying G in Three Fluid System

    Full text link
    In this work, we have considered variable G in flat FRW universe filled with the mixture of dark energy, dark matter and radiation. If there is no interaction between the three fluids, the deceleration parameter and statefinder parameters have been calculated in terms of dimensionless density parameters which can be fixed by observational data. Also the interaction between three fluids has been analyzed due to constant GG. The statefinder parameters also calculated in two cases: pressure is constant and pressure is variable.Comment: 5 pages, Accepted for publication in "Astrophysics and Space Science

    Robust filtering for a class of nonlinear stochastic systems with probability constraints

    Get PDF
    This paper is concerned with the probability-constrained filtering problem for a class of time-varying nonlinear stochastic systems with estimation error variance constraint. The stochastic nonlinearity considered is quite general that is capable of describing several well-studied stochastic nonlinear systems. The second-order statistics of the noise sequence are unknown but belong to certain known convex set. The purpose of this paper is to design a filter guaranteeing a minimized upper-bound on the estimation error variance. The existence condition for the desired filter is established, in terms of the feasibility of a set of difference Riccati-like equations, which can be solved forward in time. Then, under the probability constraints, a minimax estimation problem is proposed for determining the suboptimal filter structure that minimizes the worst-case performance on the estimation error variance with respect to the uncertain second-order statistics. Finally, a numerical example is presented to show the effectiveness and applicability of the proposed method

    Matter Outflows from AGN: A Unifying Model

    Get PDF
    We discuss a self-consistent unified model of the matter outflows from AGNs based on a theoretical approach and involving data on AGN evolution and structure. The model includes a unified geometry, two-phase gas dynamics, radiation transfer, and absorption spectrum calculations in the UV and X-ray bands. We briefly discuss several questions about the mass sources of the flows, the covering factors, and the stability of the narrow absorption details.Comment: 6 figures, accepted for publication in Astrophysics and Space Scienc

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore