604 research outputs found

    Role of Disorder on the Quantum Critical Point of a Model for Heavy Fermions

    Full text link
    A zero temperature real space renormalization group (RG) approach is used to investigate the role of disorder near the quantum critical point (QCP) of a Kondo necklace (XY-KN) model. In the pure case this approach yields Jc=0J_{c}=0 implying that any coupling J=Ìž0J \not = 0 between the local moments and the conduction electrons leads to a non-magnetic phase. We also consider an anisotropic version of the model (X−KNX-KN), for which there is a quantum phase transition at a finite value of the ratio between the coupling and the bandwidth, (J/W)(J/W). Disorder is introduced either in the on-site interactions or in the hopping terms. We find that in both cases randomness is irrelevant in the X−KNX-KN model, i.e., the disorder induced magnetic-non-magnetic quantum phase transition is controlled by the same exponents of the pure case. Finally, we show the fixed point distributions PJ(J/W)P_{J}(J/W) at the atractors of the disordered, non-magnetic phases.Comment: 5 pages, 3 figure

    Quantum Griffiths effects and smeared phase transitions in metals: theory and experiment

    Full text link
    In this paper, we review theoretical and experimental research on rare region effects at quantum phase transitions in disordered itinerant electron systems. After summarizing a few basic concepts about phase transitions in the presence of quenched randomness, we introduce the idea of rare regions and discuss their importance. We then analyze in detail the different phenomena that can arise at magnetic quantum phase transitions in disordered metals, including quantum Griffiths singularities, smeared phase transitions, and cluster-glass formation. For each scenario, we discuss the resulting phase diagram and summarize the behavior of various observables. We then review several recent experiments that provide examples of these rare region phenomena. We conclude by discussing limitations of current approaches and open questions.Comment: 31 pages, 7 eps figures included, v2: discussion of the dissipative Ising chain fixed, references added, v3: final version as publishe

    The Fayet-Iliopoulos D-term and its renormalisation in softly-broken supersymmetric theories

    Get PDF
    We consider the renormalisation of the Fayet-Iliopoulos D-term in a softly-broken abelian supersymmetric theory, and calculate the associated beta-function through three loops. We show that there exists (at least through three loops) a renormalisation group invariant trajectory for the coefficient of the D-term, corresponding to the conformal anomaly solution for the soft masses and couplings.Comment: 30 pages, Revtex, 15 Figures. Minor changes, and inadvertent omission of author from this abstract correcte

    Dual embedding of the Lorentz-violating electrodinamics and Batalin-Vilkovisky quantization

    Full text link
    Modifications of the electromagnetic Maxwell Lagrangian in four dimensions have been considered by some authors. One may include an explicit massive term (Proca) and a topological but not Lorentz-invariant term within certain observational limits. We find the dual-corresponding gauge invariant version of this theory by using the recently suggested gauge embedding method. We enforce this dualisation procedure by showing that, in many cases, this is actually a constructive method to find a sort of parent action, which manifestly establishes duality. We also use the gauge invariant version of this theory to formulate a Batalin-Vilkovisky quantization and present a detailed discussion on the excitation spectrum.Comment: 8 page

    Local fluctuations in quantum critical metals

    Full text link
    We show that spatially local, yet low-energy, fluctuations can play an essential role in the physics of strongly correlated electron systems tuned to a quantum critical point. A detailed microscopic analysis of the Kondo lattice model is carried out within an extended dynamical mean-field approach. The correlation functions for the lattice model are calculated through a self-consistent Bose-Fermi Kondo problem, in which a local moment is coupled both to a fermionic bath and to a bosonic bath (a fluctuating magnetic field). A renormalization-group treatment of this impurity problem--perturbative in Ï”=1−γ\epsilon=1-\gamma, where Îł\gamma is an exponent characterizing the spectrum of the bosonic bath--shows that competition between the two couplings can drive the local-moment fluctuations critical. As a result, two distinct types of quantum critical point emerge in the Kondo lattice, one being of the usual spin-density-wave type, the other ``locally critical.'' Near the locally critical point, the dynamical spin susceptibility exhibits ω/T\omega/T scaling with a fractional exponent. While the spin-density-wave critical point is Gaussian, the locally critical point is an interacting fixed point at which long-wavelength and spatially local critical modes coexist. A Ginzburg-Landau description for the locally critical point is discussed. It is argued that these results are robust, that local criticality provides a natural description of the quantum critical behavior seen in a number of heavy-fermion metals, and that this picture may also be relevant to other strongly correlated metals.Comment: 20 pages, 12 figures; typos in figure 3 and in the main text corrected, version as publishe

    Equation of state for Universe from similarity symmetries

    Full text link
    In this paper we proposed to use the group of analysis of symmetries of the dynamical system to describe the evolution of the Universe. This methods is used in searching for the unknown equation of state. It is shown that group of symmetries enforce the form of the equation of state for noninteracting scaling multifluids. We showed that symmetries give rise the equation of state in the form p=−Λ+w1ρ(a)+w2aÎČ+0p=-\Lambda+w_{1}\rho(a)+w_{2}a^{\beta}+0 and energy density ρ=Λ+ρ01a−3(1+w)+ρ02aÎČ+ρ03a−3\rho=\Lambda+\rho_{01}a^{-3(1+w)}+\rho_{02}a^{\beta}+\rho_{03}a^{-3}, which is commonly used in cosmology. The FRW model filled with scaling fluid (called homological) is confronted with the observations of distant type Ia supernovae. We found the class of model parameters admissible by the statistical analysis of SNIa data. We showed that the model with scaling fluid fits well to supernovae data. We found that Ωm,0≃0.4\Omega_{\text{m},0} \simeq 0.4 and n≃−1n \simeq -1 (ÎČ=−3n\beta = -3n), which can correspond to (hyper) phantom fluid, and to a high density universe. However if we assume prior that Ωm,0=0.3\Omega_{\text{m},0}=0.3 then the favoured model is close to concordance Λ\LambdaCDM model. Our results predict that in the considered model with scaling fluids distant type Ia supernovae should be brighter than in Λ\LambdaCDM model, while intermediate distant SNIa should be fainter than in Λ\LambdaCDM model. We also investigate whether the model with scaling fluid is actually preferred by data over Λ\LambdaCDM model. As a result we find from the Akaike model selection criterion prefers the model with noninteracting scaling fluid.Comment: accepted for publication versio

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic
    • 

    corecore