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Fayet-Iliopoulos D term and its renormalization in softly broken supersymmetric theories
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~Received 3 August 2000; published 29 November 2000!

We consider the renormalization of the Fayet-IliopoulosD term in a softly broken Abelian supersymmetric
theory, and calculate the associatedb function through three loops. We show that there exists~at least through
three loops! a renormalization group invariant trajectory for the coefficient of theD term, corresponding to the
conformal anomaly solution for the soft masses and couplings.

PACS number~s!: 11.10.Gh
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I. INTRODUCTION

In Abelian gauge theories withN51 supersymmetry
there exists a possible invariant that is not allowed in
non-Abelian case: the Fayet-IliopoulosD term,

L5jE V~x,u,ū !d4u5jD~x!. ~1.1!

In this paper we discuss the renormalization ofj in the pres-
ence of the standard soft supersymmetry-breaking terms

LSB52~m2! i
jf if j

2S 1

6
hi jkf if jfk1

1

2
bi j f if j1

1

2
Mll1H.c.D . ~1.2!

Let us begin by reviewing the position when there is
supersymmetry breaking, i.e. forLSB50. Many years ago
Fischleret al. @1# proved an important result concerning th
renormalization of theD term ~see also Ref.@2#!. Since it is
a *d4u-type term, one may expect that theD term will un-
dergo renormalization in general. Moreover, by simp
power counting it is easy to show that the said renormal
tion is in general quadratically divergent. Evidently th
poses a naturalness problem since~if present! it would intro-
duce the cutoff mass scale into the scalar potential. At
one loop level it is easy to show that the simple condit
Tr Y50 ~where Y is the U1 hypercharge and the trace
taken over the chiral supermultiplets! removes the diver-
gence. Remarkably, although one may of course easily d
individual diagrams proportional~for example! to TrY 5,Y 7,
etc., this condition suffices to all orders.

In the presence of supersymmetry breaking, however,
clear thatj will suffer logarithmic divergences. If calcula-
tions are done in the component formalism withD elimi-
nated by means of its equation of motion, then these div
gences are manifested via contributions to theb function for
m2. It is in this manner that the results for the softb func-
tions were given in, for example, Ref.@3#. Here we prefer to
consider the renormalization ofj separately; an advantage
this is that it means that the exact results for the sofb
functions presented in Refs.@4–7# ~see also Refs.@8,9#! ap-
ply without change to the Abelian case. The result forbj is
as follows:
0556-2821/2000/62~12!/125022~13!/$15.00 62 1250
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bj5
bg

g
j1b̂j ~1.3!

where b̂j is determined byV-tadpole ~or in components
D-tadpole! graphs, and is independent ofj. In the supersym-

metric case, we haveb̂j50, whereupon Eq.~1.3! is equiva-
lent to the statement that theD term, Eq.~1.1!, is unrenor-

malized. In the presence of Eq.~1.2!, however,b̂j depends
on m2, h andM ~it is easy to see that it cannot depend onb).
The main result of this paper is a complete calculation ofb̂j

through three loops; it is interesting that the dependence oh
and M arises first at this order.~A partial calculation was
presented in Ref.@10#.!

Although in this paper we restrict ourselves to the Abeli
case, it is evident that aD term can occur with a direc
product gauge group (G1^ G2•••) if there is an Abelian
factor: as is the case for the minimal supersymmetric st
dard model~MSSM!. In the MSSM context one may treatj
as a free parameter at the weak scale@11#, in which case
there is no need to knowb̂j . However, if we knowj at
gauge unification, then we needb̂j to predictj at low ener-
gies. Now in theD-uneliminated case it is possible to expre
all the b functions associated with the soft supersymmet
breaking terms given in Eq.~1.2! in terms of the gaugeb
function bg , the chiral supermultiplet anomalous dimensi
g and a certain functionX which appears only inbm2; more-
over in a special renormalization scheme@the Novikov-
Shifman-Vainshtein-Zakharov~NSVZ! scheme#, bg can also
be expressed in terms ofg, andX takes a particularly simple
form @7,12#. It is clearly of interest to ask whether an anal
gous exact expression exists forbj . Moreover, there exists
an exact solution to the soft renormalization group~RG!
equations form2, M and h corresponding to the case whe
all the supersymmetry breaking arises from the conform
anomaly@13# and it is also interesting to ask whether th
solution can be extended to the non-zeroj case.

The key to the derivation of the exact results for the sofb
functions is the spurion formalism. The obstacle to derivi
an analogous result forb̂j is the fact that individual super
space diagrams are~as already mentioned! quadratically di-
vergent. We do, however, present a solution forj related to
the conformal anomaly solution, but which must be co
structed order by order in perturbation theory.
©2000 The American Physical Society22-1
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II. RENORMALIZATION AND NON-PROPAGATING
FIELDS

A. Non-supersymmetric case

This paper is concerned with the renormalization of
coefficient of an auxiliary field term, and it is perhaps use
to begin with a~we hope! pedagogical discussion of this in
non-supersymmetric context. One often sees the statem
that the field theory

L5
1

2
~]mf!21

1

2
F21

1

2
hFf2, ~2.1!

wheref25(a51
a5Nfafa, is equivalent to the theory

L5
1

2
~]mf!22

l8

24
f4 ~2.2!

@wheref45(f2)2], by virtue of the equation of motion fo
the non-propagating fieldF, which is

F52
1

2
hf2 ~2.3!

so that

l853h2. ~2.4!

There is a trap for the unwary here, however, in that Eq.~2.1!
is not multiplicatively renormalizable, and as a conseque
Eq. ~2.4! is not renormalization group invariant. Let us r
place Eq.~2.1! by

L5
1

2
~]mf!21

1

2
F21

1

2
hFf22

l

24
f4. ~2.5!

We then obtain~eliminatingF)

l85l13h2, ~2.6!

and it follows that

bl85bl16hbh , ~2.7!

which is easy to verify at one loop by direct calculation:

16p2bl85
N18

3
l82 ~2.8a!

16p2bl5
N18

3
l2112lh2112h4 ~2.8b!

16p2bh5
N14

2
h31

N12

3
hl ~2.8c!

and it is easy to see that Eq.~2.7! indeed holds. The mino
subtlety here is thatbl does not vanish whenl50, so that
the naive relation Eq.~2.4! is not RG invariant. Conse-
quently, if we setl50, then Eqs.~2.8a! and ~2.8c! and are
not compatible with the~naive! result of takingm d/dm of
Eq. ~2.4!.
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One may generalize this example as follows, by introd
ing a mass forf and a linearF term:

L5
1

2
~]mf!22

1

2
m2f21

1

2
F21jF1

1

2
hFf22

l

24
f4

5
1

2
~]mf!22

1

2
m82f22

l8

24
f4 ~2.9!

where

m825m21hj. ~2.10!

We now have the additional identity

bm825bm21hbj1jbh ~2.11!

which can be verified at one loop using the results

16p2bm825
N12

3
l8m82

16p2bj5
N

2
h2j1Nhm2

16p2bm25
N12

3
lm212h2m2 ~2.12!

together with the result forbh which is unaffected.

B. Supersymmetric case:D terms

After this warm-up exercise, let us turn to a softly brok
Abelian supersymmetric gauge theory. The relevant par
the Lagrangian is as follows:

L5
1

2
D21jD1gDf* Yf2f* m2f1••• ~2.13!

whereY i
j is the charge matrix of the chiral supermultiple

andm2 is a supersymmetry-breaking term. After eliminatin
D this becomes

L52f* m̄2f2
1

2
g2~f* Yf!2, ~2.14!

where

m̄25m21gjY. ~2.15!

RG invariance of this result gives

bm̄2~m̄2, . . . !5bm2~m2, . . . !1bgjY1gbjY
5bm2~m2, . . . !12bgjY1gYb̂j~m2, . . . !,

~2.16!

where

bj5
bg

g
j1b̂j ~2.17!
2-2
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with b̂j independent ofj. For a derivation of Eq.~2.17!, see
Ref. @10#. What about the pitfall in the toy model which le
us to introducel? We are saved by supersymmetry: if w
add af4 term to Eq.~2.13!, then supersymmetry would b
broken, at the dimension 4 level; contrariwise, if we omit
then it will not be generated. Therefore, Eq.~2.16! is valid.

There is an important distinction betweenbm̄2(m̄2, . . . )
andbm2(m2, . . . ), which both appear in Eq.~2.16!, and de-
termine the mass renormalization withD eliminated and un-
eliminated respectively. Becauseb functions are determined
by one particle irreducible~1PI! diagrams,bm2 does not con-
tain any D-tadpole contributions; the renormalization
these is dealt with separately bybj . However, in the
D-eliminated formalism, there is nobj , and there is a dis-
tinct set of contributions tobm̄2 involving the four-point ver-
tex created by eliminatingD. It follows that

bm̄2~m̄2, . . . !5bm2~m̄2, . . . !1gYb̂j~m̄2, . . . !,
~2.18!

since diagrams corresponding to one or more insertions
D-tadpole-type contribution on theinternal line of a diagram
do not contribute to theb function because the correspon
ing Feynman integral is factorized@14#.

Let us now define our notation for the calculation. W
take an AbelianN51 supersymmetric gauge theory wi
superpotential

W~F!5
1

6
Yi jkF iF jFk1

1

2
m i j F iF j , ~2.19!

and at one loop we have

16p2bg
(1)5g3Q5g3Tr@Y 2#, ~2.20a!

16p2g (1)i
j5Pi

j5
1

2
YiklYjkl22g2~Y 2! i

j . ~2.20b!

In the spurion formalism the soft-breaking Lagrangian
given by

Lsoft52F E d2uu2S 1

6
hi jkF iF jFk

1
1

2
bi j F iF j1

1

2
MWaWaD1H.c.G

2E d4u~m2! i
ju

2ū2F̄ ie
2gYVF j , ~2.21!

whereV is the vector superfield andWa the corresponding
field strength. The equivalent expression in terms of com
nents is given in Eq.~1.2!. With the explicit all orders resul
for bm2, we prove a remarkably simple result forb̂j . The
aforementioned exact result forbm2 is @6#
12502
,

a

-

~bm2! i
j~m2, . . . !5F2OO* 12MM* g2

]

]g2 1Ỹ
]

]Y

1Ỹ*
]

]Y*
1X

]

]gGg i
j , ~2.22!

where

O5S Mg2
]

]g2 2hlmn
]

]YlmnD , ~2.23!

Ỹi jk5~m2! i
lY

l jk1~m2! j
lY

ilk1~m2!k
lY

i j l ~2.24!

and ~in the NSVZ scheme!

16p2XNSVZ522g3Tr@m2Y 2#. ~2.25!

Once again we should emphasize that, whereas in a n
Abelian theory Eq.~2.22! holds in both theD-eliminated and
D-uneliminated formalisms, in a theory with Abelian facto
it is only true forD uneliminated.

It is now easy to show that

bm2~m̄2, . . . !5bm2~m2, . . . !. ~2.26!

This follows simply by substituting form̄2 from Eq. ~2.15!
and then using the facts that

~Y! i
lY

l jk1~Y! j
lY

ilk1~Y!k
lY

i j l 50 ~2.27!

by gauge invariance and

Tr~Y 3!50 ~2.28!

for anomaly cancellation.
The result forX, Eq. ~2.25!, applies in the NSVZ scheme

which is one of a class of schemes related by redefinition
g andM, the ramifications of which are described in Ref.@4#.
Now X transforms non-trivially under these redefinitions@7#,
but it can be shown using Eqs.~2.27!, ~2.28! that X is un-
changed by the replacementm2→m̄2 in any member of this
class of schemes; consequently Eq.~2.26! always applies.
We then find immediately from Eqs.~2.16!, ~2.18! that

b̂j~m̄2, . . . !52
bg

g
j1b̂j~m2, . . . !. ~2.29!

Now on dimensional grounds we may write

b̂j5m2A1~g,Y,Y* !1hh* A2~g,Y,Y* !1MM* A3~g,Y,Y* !

1~Mh* 1M* h!A4~g,Y,Y* !, ~2.30!

where we have suppressed (i , j , . . . ) indices for simplicity.
@In the conventional dimensional reduction~DRED! scheme,
b̂j will also depend on thee scalar (mass)2, m̃2, and this
dependence, as we shall see, arises first at three loops
three-loop result, therefore, will be in the DRED8 scheme
@15#.# Hence we have at once that
2-3
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Tr~YA1!52
bg

g2
. ~2.31!

So if we take theD-tadpole contributions tobj , then the
terms proportional tom2 will reduce to 2bg /g if we replace
m2 by gY. This result is, in fact, clear from a diagrammat
point of view, since the aforesaid replacement converts
diagrams intoD self-energy graphs, and hence indeed giv
rise tobg .

III. ONE LOOP CALCULATION

Here we describe the one-loop calculation ofb̂j ; this is
straightforward, of course. In a softly broken theory, theb̂j

calculation may be carried out in components or using
superfield spurion formalism. Usually, superfield techniqu
~once mastered! offer a substantial reduction in labor com
pared to component calculations; we will begin to susp
from the one loop calculation, however, and confirm in t
next section, that this is not the case here.

In components there is a single diagram, shown in Fig
and we have

Fig. 152g~Y! i
jE ddkS 1

k21m2D
i

j

52g~Y! i
jE ddkS 1

k2
d j

i2
1

k4
~m2! j

i1••• D
52g Tr~Y!E ddk

k2
1g Tr~Ym2!

2

16p2~42d!

1finite terms, ~3.1!

where our integration measureddk includes the usua
(2p)2d factor. Note that we present this Feynman integ
calculation~and subsequent ones! in Euclidean space. In or
der to extract the ultraviolet divergence from the logarithm
cally divergent term in Eq.~3.1! we have made the replace
ment

E ddk

k4
→E ddk

~k21m0
2!2

~3.2!

wherem0 is an infrared~IR! regulator mass. Naturally we
could have directly evaluated the diagram without first e

FIG. 1. Feynman diagram for the one-loop calculation in co
ponents. Dashed lines are scalar propagators and the externa
is a D. Blobs denotem2 insertions.
12502
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panding in powers ofm2, but this procedure would be cum
bersome at higher loops; it is simpler to treatm2 as an inser-
tion and introduce regulator masses only for tho
propagators which are IR dangerous. This technique was
scribed in Ref.@16#, and is generally more convenient tha
the alternative of ‘‘threading’’ a single momentum throug
the diagram@17#. The pole result for a graph of any numb
of loops, when all sub-divergences are subtracted, is inde-
pendent of the precise details of how the IR divergences
regulated. All this is, of course, well known to higher-loo
calculators but may, perhaps, be of some pedagogical in
est.

We see that to remove the quadratic divergence we m
have TrY50, and that at one loop

b̂j5
1

16p2
g Tr~Ym2!. ~3.3!

In the superfield spurion calculation we have two grap
shown in Fig. 2.

The results are as follows:

Fig. 2a52gE ddkE d4u V~u,ū !D2FTr~Y!
d (4)~u2u8!

k2

1Tr~Ym2!
1

k4
D̄2u2ū2D2d (4)~u2u8!G D̄2uu5u8

~3.4!

while

Fig. 2b52g Tr~Ym2!E ddkE d4u u2ū2V~u,ū !D2

3
d (4)~u2u8!

k2
D̄2uu5u8

52g Tr~Ym2!E d4u u2ū2V~u,ū !E ddk

k2
. ~3.5!

The first term from Eq.~3.4! vanishes via TrY50, and the
second may be reduced using the identity Eq.~A5! to give

Fig. 2a5g Tr~Ym2!E ddk

k4 E d4uV~u,ū !e2uk” ū. ~3.6!

-
eld FIG. 2. Feynman diagrams for the one-loop calculation in
perspace. Solid lines are chiral propagators and the external
are vector superfields. Blobs denotem2 insertions.
2-4
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If we expand the exponential in Eq.~3.6!, the quadratically
divergentu2ū2 term cancels Fig. 2b, while the remainin
term reproduces the component calculation, Eq.~3.1!.

IV. TWO LOOP CALCULATION

In this section we discuss the two-loop calculation ofb̂j

in some detail. Calculations ofb functions for soft-breaking
parameters may be carried out in components or using
spurion formalism. Indeed, as mentioned earlier, in the c
of bh , bM and bm2 the fact that the spurion diagrams a
only logarithmically divergent means that these quantit
have simple all-orders expressions in terms ofg and bg .
However, as we have emphasized, individual diagrams c
tributing to bj are quadratically divergent. This means th
if, for example, we represent ahi jk vertex in superspace b
hi jku2, then we cannot simply factor theu2 out, because it
can be ‘‘hit’’ by a superspaceD derivative; indeed, as is
clear from the one-loop calculation, the contribution wh
the u2 is not ‘‘hit’’ will not give a logarithmic divergence,
and must cancel. The simple relationship between a gr
with a hi jk and the corresponding one with a supersymme
Yukawa vertex which holds for the soft breakingb functions
is thereby lost. Nevertheless, the spurion formalism may
be used. In this section we shall describe both the spu
approach and the component calculation. Normally a
perspace calculation would be expected to be more effic
than the component version. In this case, however, we s
see that the advantages of the spurion calculation are b
means so obvious. The fact that in components theD inser-
tion can only be on a scalar line considerably reduces
number of diagrams in this case.

The two-loop diagrams in the spurion formalism are d
picted in Fig. 3. Standard superspace manipulations are
to reduce the graphs to basic momentum integrals, toge
with a single remaining*d4u; by power counting, the loga
rithmically divergent contributions come from terms with n
u ’s and ū ’s remaining in the integrand. Some useful iden

FIG. 3. Feynman diagrams for the two-loop calculation in s
perspace. Solid lines are chiral propagators and internal wavy l
are vector propagators. Blobs denotem2 insertions.
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ties are collected in Appendix A. Note that we have omitt
graphs with a mass insertion on the leftmost vertex, wh
the externalV is attached; these graphs, like Fig. 2b, do n
contribute to the logarithmic divergence, and are canceled
the quadratic divergences~terms with an integrand involving
u2ū2) from the graphs shown. We have also omitted a gra
like Fig. 3d, but with the mass insertion on the rightmo
vertex, because it also gives rise to a quadratic diverge
only. The divergent contributions tojB from each graph are
listed in Table I.

HereJ denotes the standard two loop momentum integ
shown in Fig. 4, and also

S15Tr@Ym2Y2#, S25g2Tr@Y 3m2#. ~4.1!

The calculation ofJ proceeds as follows~note that here
and in all subsequent integrals we subtract all subdiv
gences!:

J5E ddkddq

q2~k2q!2~k21m0
2!2

2
2

16p2e
E ddk

~k21m0
2!2

5
2

~4p!de2 S 11
e

2
2ge D2

4

~4p!~d/2! 12e2 S 12
ge

2 D
5

1

~16p2!2 S 2
2

e2
1

1

e D . ~4.2!

We have ignored contributions of the formI 2, where

I 5E ddk

~k21m0
2!2

, ~4.3!

such as that from Fig. 3b, becauseI 2 has no simple pole afte
sub-divergence subtraction;I 2 is the simplest possible ex
ample of afactorizedFeynman integral, which quite gene
ally give no simple pole@14#. Subsequently we will ignore
any graph which reduces to factorized form.

Thus using the simple pole given by

-
es

TABLE I. Results for two-loop Feynman diagrams.

a b c d e f

Fig. 3 2JS1 0 8JS2 24JS2 4JS2 24JS2

Fig. 5 2JS1 2JS2 4JS2 22JS2

FIG. 4. Momentum integral for the two-loop calculation. Th
dot denotes a double propagator.
2-5
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Jsimple5
1

~16p2!2e
, ~4.4!

and recalling that to get theL-loop contribution to theb
function we need to multiply the Feynman diagram sim
pole result byL, we find that at two loops we have

16p2b̂j52g Tr@Ym2#24g Tr@Ym2g (1)#1•••, ~4.5!

so we see that in fact onlyA1 is non-zero through this order
The calculation may equally well be performed in t

component formalism. The relevant diagrams are shown
Fig. 5. As we mentioned earlier, there are relatively fe
indeed fewer than in the spurion case. Their divergent c
tributions are again listed in Table I, and upon adding
find again the result of Eq.~4.5!. It is apparent from Fig. 5
that there is no DRED or DRED8 distinction at this order,
because the vector boson couples only via thef* fWm ver-
tex, which projects out thee scalar. A further consistenc
check is provided by Eq.~2.31!; since

16p2bg5g3Tr@Y 2#22g3Tr@Y 2g (1)#1•••, ~4.6!

we see that Eq.~4.5! is indeed consistent with Eq.~2.31!.
Finally, it is easy to verify that our result reproduces t
relevant terms from the calculation ofbm2 ~with D elimi-
nated! presented in Refs.@3,18#. ~The other two-loop calcu-
lation of the softb functions@8# was performed withD un-
eliminated.!

V. THREE LOOP RESULTS

We have calculatedb̂j
(3)DRED8 in full. As we found in the

previous section, the calculation in terms of component fie
is generally more straightforward than that using the spur
formalism. In the case of terms proportional tom2YY4 we
have performed both spurion and component calculatio
while for m2Y 3Y2-type terms we have used the spurion fo

FIG. 5. Feynman diagrams for the two-loop calculation in co
ponents. Dashed lines are scalar propagators, solid lines are c
fermion propagators, double solid lines are gaugino propagators
internal wavy lines are vector propagators. Blobs denotem2 inser-
tions.
12502
in
,
n-
e

s
n

s,

malism, which could be streamlined by systematic use of
identities in Appendix A. Both these calculations were se
sitive to the check provided by Eq.~2.31!. The rest of the
calculation was done using components. Although the nu
ber of diagrams is large, the amount of algebra involved
each diagram is not great.

In both component and superfield formalisms, eve
graph can be reduced to a sum of terms consisting of a p
uct of a group theory factor and one of a set of logarithm
cally divergent three loop graphs, which are shown in Fig

These graphs may be evaluated by the introduction
infrared regulator masses as described forJ in the previous
section. The results for the simple pole contributions~after
subtraction of subdivergences! are as follows:

Asimple5
4

3

1

~16p2!3e
, Bsimple52

2

3

1

~16p2!3e
,

Csimple5
2

3

1

~16p2!3e
, Dsimple52

2

3

1

~16p2!3e
,

Esimple54z~3!
1

~16p2!3e
, Fsimple52

3

4

1

~16p2!3e
.

~5.1!

We relegate details of the calculation to Appendix B. T
final result may be written as follows:

~16p2!3
b̂j

(3)DRED8

g

526~16p2!2Tr@Ym2g (2)#24 Tr@WPY#

2
5

2
Tr@HH* Y#12 Tr@P2m2Y#224g2z~3!Tr@WY 3#

112z~3!g2Tr@M* HY 31c.c.#

2144z~3!g4MM* Tr@Y 5# ~5.2!

where@3#

-
iral
nd

FIG. 6. Momentum integrals for the three-loop calculation. O
~two! dots denote a double~triple! propagator. The two arrows in D
denote contracted momenta.
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Wi
j5S 1

2
Y2m21

1

2
m2Y21h2D i

j

12YipqYjpr~m2!r
q

28g2MM* ~Y 2! i
j , ~5.3!

Hi
j5hiklYjkl14g2M ~Y 2! i

j ~5.4!

and

~16p2!2g (2)i
j5@2YjmnY

mpi22g2~Y 2!p
jd

i
n#Pn

p

12g4Tr@Y 2#~Y 2! i
j , ~5.5!

with (Y2) i
j5YiklYjkl ,(h2) i

j5hiklhjkl . We can now check
them2 terms in this result, using Eq.~2.31!. Replacingm2 by
gY, we obtain

g~16p2!3Tr~YA1
(3)!56X1112X312X4

212g6Tr@Y 2#Tr@Y 4#, ~5.6!

where

X15g2YklmPn
l~Y 2!p

mYknp ,

X35g4Tr@PY 4#,

X45g2Tr@P2Y 2#, ~5.7!

in precise agreement with the result forbg
(3) , given in @19#,

which for an Abelian theory is

~16p2!3bg
(3)DRED5g$3X116X31X426g6Tr@Y 2#Tr@Y 4#%.

~5.8!

~Of course forbg there is no distinction between DRED an
DRED8.! Note that b̂j

(3)DRED would only differ from

b̂j
(3)DRED8 by the inclusion of terms of the formg5m̃2Tr@Y 5#

and g3m̃2Tr@PY 3#, arising from e-scalar mass insertions
We have not calculated these explicitly because it is c
they can be removed by a redefinition ofm2, as follows:

dm2522
g2

16p2
m̃2Y 21a1S g2

16p2D 2

m̃2Y 4

1a2

g2

~16p2!2
m̃2PY 2, ~5.9!

where the first term was derived in@15#. It would be inter-
esting to verify that the appropriate redefinition also rend
the three-loop contribution tobm2 independent ofm̃2.

Finally, let us compare our result with the form o

b̂j
(3)DRED8 that we obtained in Ref.@10# ~note that we did not

there distinguish DRED from DRED8!. We see that our re
sult Eq.~5.2! indeed confirms the conjectured form given
Eq. ~4.10! of Ref. @10#, and that the two then undetermine
constants are given byn1524z(3) andn250.
12502
r

s

VI. CONFORMAL ANOMALY TRAJECTORY

The following set of equations provide an exact soluti
to the renormalization group equations forM , h andm2:

M5M0

bg

g
, ~6.1a!

hi jk52M0bY
i jk , ~6.1b!

~m2! i
j5

1

2
uM0u2m

dg i
j

dm
. ~6.1c!

Moreover, these solutions indeed hold if the only source
supersymmetry breaking is the conformal anomaly, wh
M0 is in fact the gravitino mass.

This set of soft breakings has generated considerable
terest, but there are clear difficulties for the MSSM, since
is easy to see that sleptons are predicted to have neg
(mass)2. Most studies of this scenario have resolved t
dilemma by adding a constantm0

2, presuming another sourc
of supersymmetry breaking. A non-zeroj alone is not an
alternative, unfortunately, as is easily seen from Eq.~2.15!;
the two selectrons, for example, have oppositely signed
percharge, so one of them at least remains with nega
(mass)2. This stumbling block may be overcome by intro
ducing an extraU1 @20,21#; for alternative treatments se
Refs.@13,22#.

It is immediately obvious that, given Eq.~6.1!, there is a
RG invariant solution forj through two loops~for b̂j) given
by

16p2j5guM0u2Tr@Y~g2g2!#, ~6.2!

since differentiating with respect tom and using Eq.~6.1c!
leads at once to Eqs.~2.17!, ~4.5!. Interestingly, however,
this result forj vanishesat leading and next-to-leading orde
since one easily demonstrates that

Tr@Yg (1)#50 ~6.3!

FIG. 7. Feynman diagrams in superspace for the three-loop
tribution of the formm2Y4Y, i.e. T1•••3. Blobs denotem2 inser-
tions.
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and

Tr@Yg (2)#5Tr@Y~g (1)!2#. ~6.4!

It is interesting to ask whether the trajectory can be exten
beyond two loops, and whether it in fact continues to van
order by order. We have shown that there is indeed a ge
alization of Eq.~6.2! to at least three loops~for b̂j), and that
at this order the result forj is non-zero.

Our result is as follows:

jDRED8

guM0u2
5~16p2!24$23I 1212z~3!

3~ I 222g6Tr@Y 2#Tr@Y 5# !%, ~6.5!

where

I 15Tr@YP3#2
1

2
~Y! i

jY
jklYimnP

m
kP

n
l

12g2Tr@Y 3P2#22g4Tr@Y 2#Tr@Y 3P#

I 25g2~Y 3! i
jY

jklYikmPm
l1g2Tr@Y 3P2#

12g4Tr@Y 5P#. ~6.6!

It is easy to verify that the result of takingm ]/]m of Eq.
~6.5! is identical to that obtained by substituting Eqs.~6.1! in
Eqs.~4.5!, ~5.2!. This is a non-trivial result in that the num
ber of candidate terms for inclusion in Eq.~6.5! is consider-
ably less than the number of distinct terms which arise w
Eqs. ~4.5!, ~5.2! are placed on the RG trajectory. We ther
fore conjecture that the trajectory extends to all orders.

It is natural to ask what the result forb̂j
(3) is in the NSVZ

scheme, which is obtained~at the relevant order! by the re-
definitions@4#

~16p2!2dg52
1

2
g3Tr@PY 2#

FIG. 8. Feynman diagrams in components for the three-l
contribution of the formm2Y4Y, i.e. T1•••3.
12502
d
h
r-

n
-

~16p2!2dM52Mg2$Tr@PY 2#22g2Tr@~Y 2!2#%

1
1

2
g2hiklYjkl~Y 2! j

i . ~6.7!

It is straightforward to show that in order to obtain the r

p

FIG. 9. Feynman diagrams in superspace for the three-loop
tribution of the formg2m2Y2Y 3, i.e. T4•••6.
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sults, Eqs.~2.17! and ~2.31!, in the NSVZ scheme, we mus
also redefinej as follows:

~16p2!2dj52
1

2
g2Tr@PY 2#j2gTr@m2PY#. ~6.8!

The effect of this is to replace Eq.~6.5! by

jNSVZ

guM0u2
5~16p2!24$24I 1212z~3!~ I 2

22g6Tr@Y 2#Tr@Y 5# !% ~6.9!

and Eq.~5.2! by

~16p2!3
b̂j

(3)NSVZ

g
524~16p2!2Tr@Ym2g (2)#

2
5

2
~2 Tr@WPY#1Tr@HH* Y# !

224g2z~3!Tr@WY 3#

FIG. 9 ~Continued!.
12502
112z~3!g2Tr@M* HY 31c.c.#

2144z~3!g4MM* Tr@Y 5#. ~6.10!

It is disappointing that this expression does not immediat
suggest an all orders result. At this point it is worth recalli
that, while to connect the DRED8 and NSVZ schemes via
Eq. ~6.7! we redefinedg andM, there exists also a redefin
tion of Y @involving z(3)] which has the pleasant property o
extending to three loops the existence of finiteN51 theories
@23#. Unfortunately this redefinition disturbs Eq.~2.22!,
which leads one to imagine that there might be a combi

FIG. 10. Feynman diagrams in components for the three-l
contribution toT8.

FIG. 11. Feynman diagrams in components for the three-l
contribution toT9 ,T10.
2-9
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redefinition ofm2,Y that both preserves Eq.~2.22! and sim-
plifies b̂j

(3) . We have not yet succeeded in constructing su
a transformation.

VII. FINAL REMARKS

We have presented a detailed, and we hope a reason
self-contained, description of the calculation ofb̂j through
three loops. It is intriguing that in the Abelian case we a
unable to express the renormalization of the theory co
pletely in terms ofbg and g, which, in the non-Abelian
case, suffice to describe the renormalization of both
unbroken theory and also the theory with the stand
soft terms. Although there exists perturbatively a solut
related to the AMSB solution for the soft parameters, on
again we are unable at the moment to extend this solutio
all orders.

The next step is obviously an extension of our calculat
to the case of a product gauge group including both Abe
and non-Abelian factors, such as the MSSM; this is no
trivial deduction from the results we have presented.
though it is clear that ifj is assumed to be small at gaug

FIG. 12. Feynman diagrams in components for the three-l
contribution toT11.

FIG. 13. Feynman diagrams in components for the three-l
contribution toT12. Blobs denote gaugino mass insertions..
12502
h

bly

e
-

e
d
n
e
to

n
n
a
-

unification, then it does not have much effect at low en
gies, it should be remembered that this is an assumption,
that the MSSM has one more parameter than is commo
supposed.
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APPENDIX A: D-ALGEBRA IDENTITIES

In this appendix we list some identities that we fou
useful in superspace calculations of contributions tob̂j . ~An
early reference for superspace calculations incorporating
breaking is Ref.@24#.! The soft terms given in Eq.~2.21! are
treated as insertions in the superfield diagrams and stan

p

p

TABLE II. Results for Fig. 9.

a 22E 1
2 T42T5

b 24A 1
4 T41

1
2 T51T6

c 24A T5

d 22C 2T52T6

e 22(2A1B12D) 2
1
2 T4

f 24A 2
1
4 T41

1
2 T5

g 4A 2
1
2 T4

h 4A 1
4 T42

1
2 T52T6

i 24(4A2C2E) 2
1
2 T4

j 24(2A22D2E) 1
4 T42

1
2 T52T6

k 28(A1D) 1
4 T42

1
2 T52T6

l 24A 2
1
2 T4

m 24A 2
1
2 T4

n 2B T4

o 2A T4

p 2B T4

q 4A 1
4 T42

1
2 T52T6

r 4A 2
1
2 T4

s 24(A1B) T4

t 22(2A1B12D) T6

u 2A T4

v 22A T4

w 22B T4

x 24(A1B) T4

y 22B T4

z 2B T4

aa 2B T4

bb 22B T4

TABLE III. Results for Fig. 10~all multiplied by T8).

a1b c d1e f g

Fig. 10 (C24A22B) 4(A2F) (2B12F24A) 2F C
2-10
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TABLE IV. Results for Fig. 12~all multiplied by T11).

a b c d e f g h i

Fig. 12 2A2B A 22B 2A 2B 1
2 B 2A 1

2 (4A2B22E) A2B2E
up
v
pe

e-
a

oop
superspace manipulations may then be used to reduce s
graphs to ordinary momentum space integrals. It is con
nient to denote the momentum space version of the su
space covariant derivatives by

~Dp1!a5
1

2 F ]

]u1
a

2p” aȧū1
ȧG ,

~D̄p1!ȧ52
1

2 F ]

]ū1
ȧ

2p” aȧu1
aG , ~A1!

where

p” aȧ[pmsaȧ
m

[ isaȧ
m

]m . ~A2!

We then have the fundamental supersymmetry algebra

$~Dp1!a ,~D̄p1!ȧ%5
1

2
p” aȧ . ~A3!

We find

Dp1
2 u1

252eu1p” ū1, D̄p1
2 ū1

252e2u1p” ū1, ~A4!

and moreover

Dp1
2 D̄p1

2 u1
2ū1

2Dp1
2 D̄p1

2 d125eu1p” ū11u2p” ū2,

D̄p1
2 Dp1

2 u1
2ū1

2D̄p1
2 Dp1

2 d125e2(u1p” ū11u2p” ū2), ~A5!

where

d125d (4)~u12u2!. ~A6!

We also have

d12D̄q1
2 Dq1

2 e2u1p” ū1D̄q1
2 Dq1

2 d125d12@~p2q!222p2u1q” ū1

12q2u1p” ū11p2q2u1
2ū1

2#,

~A7a!

d12Dq1
2 D̄q1

2 e2u1p” ū1Dq1
2 D̄q1

2 d125d12@~p1q!212p2u1q” ū1

12q2u1p” ū11p2q2u1
2ū1

2#.

~A7b!

Finally,

TABLE V. Results for Fig. 14~all multiplied by T13).

a b c d

Fig. 14 2C 2(A1B12D) 2C 2(A2B)
12502
er-
e-
r-

d12Dr1
2 D̄r1

2 @~p2q!222p2u1q” ū112q2u1p” ū1

1p2q2u1
2ū1

2#Dr1
2 D̄r1

2 d12

5d12@~p2q!2r 212q2p•r 22p2q•r 1p2q2#

1terms inu1 ,ū1 , ~A8a!

d12D̄r1
2 Dr1

2 @~p2q!222p2u1q” ū112q2u1p” ū1

1p2q2u1
2ū1

2#D̄r1
2 Dr1

2 d12

5d12@~p2q!2r 222q2p•r 12p2q•r 1p2q2#

1terms inu1 ,ū1 . ~A8b!

Note that the right-hand sides of Eqs.~A7a!, ~A7b! are re-
lated byq↔2q, and similarly those of Eqs.~A8a!, ~A8b!
are related byr↔2r .

APPENDIX B: THREE LOOP DETAILS

In this Appendix we give a complete graph-by-graph d
scription of the three-loop calculation. We start by giving
list of the distinct tensor structures involved:

FIG. 14. Feynman diagrams in components for the three-l
contribution toT13.
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TABLE VI. Results for Fig. 15~all multiplied by T14).

a b c d e f

Fig. 15 8(E1
1
2 C2A1

1
2 B) 4(B2C) 22C 8(B2A) 8( 1

2 B1
1
2 E2A) 22C

g h

Fig. 15 4(A1B12D) 8(A2B)
so

an

ar
fo

this

l,

les

b-

oop
T15~Y2! i
jY

jklYikm~m2Y!m
l ,

T25~Y2! i
jY

jklYimn~m2!m
kY n

l ,

T35Tr@Y2Y2m2Y#, T45g2Tr@Y2m2Y 3#,

T55g2YiklYimn~m2Y!m
k~Y 2!n

l ,

T65g2YiklYimn~m2!m
k~Y 3!n

l , T75g4Tr@m2Y 5#,

T85g4Tr@Y 2#Tr@m2Y 3#, T95YiklYimnhjklh
pmnY p

j ,

T105Tr@Y2h2Y#, T115g2Tr@h2Y 3#,

T125g2MhiklY
jkl~Y 3! i

j , T135g2MM* Tr@Y2Y 3#,

T145g4MM* Tr@Y 5#. ~B1!

We now give a list of diagrams contributing to these ten
structures, with the exception ofT7, for which there are a
very large number of separate diagrams; note that whenm2

is replaced bygY, T7 and onlyT7 produces Tr@Y 6#, so that
we can in fact infer the coefficient ofT7 in our final result
via Eq. ~2.31!. We did, however, perform the explicitT7
calculation, and indeed obtained the expected result.

We begin with a comparison between superspace
component formalisms. The results from Fig. 7~the super-
space calculation! are

Fig. 7a52
1

2
~B12D !~T11T2!, Fig. 7b5AT1 ,

Fig. 7c5
1

2
CT2 , Fig. 7d5

3

4
BT3 , ~B2!

while from Fig. 8~the component calculation! we find

Fig. 8a52
1

2
~B1C12D !~T11T2!,

Fig. 8b5~A2F !T1 ,

Fig. 8c5FT1 , Fig. 8d5
1

2
C~T112T2!,

Fig. 8e5
3

4
BT3 . ~B3!

@Here and elsewhere, we combine diagrams which cle
give identical results, up to symmetry factors. Consider
12502
r

d

ly
r

example, Fig. 8d. Because the scalar fields are complex,
diagram represents two distinct~by the usual rules! Feynman
diagrams.# The totals of Figs. 7, 8 are manifestly identica
which is a good check on our spurion rules.

The results from Figs. 9,10,12,14,15 are given in Tab
II–VI respectively.

The results from Fig. 11 are given by

Fig. 11a52
1

2
AT9 , Fig. 11b5

1

4
BT9 ,

Fig. 11c52
1

4
AT10, Fig. 11d5

1

2
BT10. ~B4!

The results from Fig. 13 are

Fig. 13a5~E22A!@T121~T12!* #,

Fig. 13b5B@T121~T12!* #. ~B5!

The final total is obtained by combining the tables, su
stituting the simple pole results forA,B, . . . ,F from Eq.
~5.1!, and multiplying by 3~for three loops!:

FIG. 15. Feynman diagrams in components for the three-l
contribution toT14.
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~16p2!3
b̂j

(3)DRED8

g

57T114T22
3

2
T31@10224z~3!#T4212T5

116@123z~3!#T6216T7212T82
5

2
T922T10
s.

D

h

ls,

12502
18@123z~3!#T1122@526z~3!#~T121T12* !

116T1328@13218z~3!#T14, ~B6!

which can easily be recast into the form given in Eq.~5.2!.
~As indicated earlier, we have suppressed details of theT7
computation.!
a-
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