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Fayet-lliopoulos D term and its renormalization in softly broken supersymmetric theories
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We consider the renormalization of the Fayet-lliopoulbgerm in a softly broken Abelian supersymmetric
theory, and calculate the associag@tlinction through three loops. We show that there existdeast through
three loopsa renormalization group invariant trajectory for the coefficient ofBhierm, corresponding to the
conformal anomaly solution for the soft masses and couplings.

PACS numbds): 11.10.Gh

I. INTRODUCTION By ~
ﬁ§:E§+ﬂ§ (1.3
In Abelian gauge theories witiN=1 supersymmetry
there exists a possible invariant that is not allowed in the

non-Abelian case: the Fayet-lliopoul®sterm, . ) )
where B, is determined byV-tadpole (or in components

- D-tadpole graphs, and is independent &fln the supersym-
L=§f V(x,6,0)d*6=£D(X). (1.)  metric case, we havg,=0, whereupon Eq(1.3) is equiva-
lent to the statement that the term, Eq.(1.1), is unrenor-

In this paper we discuss the renormalizatior¢éh the pres-  Malized. In the presence of E(L.2), however,3, depends
ence of the standard soft supersymmetry-breaking terms Onm?, handM (it is easy to see that it cannot dependmn
The main result of this paper is a complete calculatioy of
Leg=— (m2)9¢i¢j through three loops; it is interesting that the dependende on
and M arises first at this ordei(A partial calculation was
ik 1 i presented in Ref10].)
—|gh" bt 5b didj+ M+ H.C.l. (1.2 Although in this paper we restrict ourselves to the Abelian
case, it is evident that ® term can occur with a direct
product gauge group3;®G,---) if there is an Abelian

Let us begin by reviewing the position when there is NOtactor: as is the case for the minimal supersymmetric stan-

B ot oot oo s 078 mOGeIMSSH). n e MSSM contetcne may es
- . L as a free parameter at the weak sddl&|, in which case
renormalization of théd term (see also Ref.2]). Since it is , A :
a [d*¢-type term, one may expect that tReterm will un-  there is no need to knoyg,. However, if we know¢ at
dergo renormalization in general. Moreover, by simplegauge unification, then we neg} to predicté at low ener-
power counting it is easy to show that the said renormalizagies. Now in theD-uneliminated case it is possible to express
tion is in general quadratically divergent. Evidently this all the 8 functions associated with the soft supersymmetry-
poses a naturalness problem sifié@reseny it would intro-  breaking terms given in Eq1.2) in terms of the gaugeg
duce the cutoff mass scale into the scalar potential. At théunction g, the chiral supermultiplet anomalous dimension
one loop level it is easy to show that the simple conditiony and a certain functioX which appears only ifB,2; more-
TrY=0 (where ) is the U; hypercharge and the trace is over in a special renormalization scherfitae Novikov-
taken over the chiral supermultiplgtsemoves the diver- Shifman-Vainshtein-ZakharaiNSVZ) schemé, B, can also
gence. Remarkably, although one may of course easily dralwe expressed in terms gf andX takes a particularly simple
individual diagrams proportiongfor example to Tr)%, 7, form[7,12]. It is clearly of interest to ask whether an analo-
etc., this condition suffices to all orders. gous exact expression exists f8f. Moreover, there exists
In the presence of supersymmetry breaking, however, it igin exact solution to the soft renormalization grolRG)
clear thaté will suffer logarithmic divergences. If calcula- equations form?, M andh corresponding to the case when
tions are done in the component formalism withelimi- all the supersymmetry breaking arises from the conformal
nated by means of its equation of motion, then these diveranomaly[13] and it is also interesting to ask whether this
gences are manifested via contributions to @hfeinction for ~ solution can be extended to the non-zércase.
m?. It is in this manner that the results for the sgffunc- The key to the derivation of the exact results for the gbft
tions were given in, for example, RéB]. Here we prefer to  functions is the spurion formalism. The obstacle to deriving
consider the renormalization gfseparately; an advantage of an analogous result fg8; is the fact that individual super-
this is that it means that the exact results for the gdft space diagrams af@s already mentiongdjuadratically di-
functions presented in Refgd—7] (see also Refd8,9]) ap-  vergent. We do, however, present a solution foelated to
ply without change to the Abelian case. The resultfgris ~ the conformal anomaly solution, but which must be con-
as follows: structed order by order in perturbation theory.
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Il. RENORMALIZATION AND NON-PROPAGATING
FIELDS

A. Non-supersymmetric case

This paper is concerned with the renormalization of the
coefficient of an auxiliary field term, and it is perhaps useful
to begin with a(we hope pedagogical discussion of this in a
non-supersymmetric context. One often sees the statement

that the field theory

- 2y T2y gy 2.1
=5(0,¢)"+ 5F*+ ShEe7, 2.0
where $?=32=1¢2¢?, is equivalent to the theory
L—1 2 N g 2.2
=5(0ud)"= 5,4 2.2

[where ¢*=(¢?)?], by virtue of the equation of motion for
the non-propagating field, which is

— 1h 2
F=-5he (2.3

so that
N’ =3h2 (2.9

There is a trap for the unwary here, however, in that(Bdl)
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One may generalize this example as follows, by introduc-
ing a mass forp and a linear~ term:

1 1 1 1 N
_- 2_ T 242, T2 - 2_ 4
L Z(am) 2m 1] +2F +§F+2hF¢ 24(]5

!

1 1 A
=§(ﬁﬂ¢)2—§m'2¢2—§1¢4 (2.9

where
m’?=m?+h¢. (2.10
We now have the additional identity
Bm2= B2+ hBe+ &P (211

which can be verified at one loop using the results

2p _NT2.. 5
1677 BmIZ 3 }\ m

N
16m°p= 5 h*¢+Nhn?

N+2
1672 B = —— Am?+ 2h’m?

3 (2.12

together with the result foBy, which is unaffected.

is not multiplicatively renormalizable, and as a consequence

Eq. (2.4) is not renormalization group invariant. Let us re-

place Eq.(2.1) by

Lzl(a d)>+ EF2+ EhF¢>2—i¢>4. (2.5
2 H 2 2 24
We then obtaineliminating F)
N =\+3h2 (2.6)
and it follows that
Br'=Ppr+6hBn, (2.7)

which is easy to verify at one loop by direct calculation:

N+8

16728, = Tx'z (2.89
N+8

16728, = Tx2+ 122 h2+12h* (2.8
N+4 N+2

167T2ﬁh: Th3+ Th)\ (28@

and it is easy to see that E(.7) indeed holds. The minor
subtlety here is thgB, does not vanish when=0, so that
the naive relation Eq(2.4) is not RG invariant. Conse-
quently, if we set\=0, then Eqs(2.89 and (2.89 and are
not compatible with thénaive result of takingu d/du of
Eq. (2.4).

B. Supersymmetric caseD terms

After this warm-up exercise, let us turn to a softly broken
Abelian supersymmetric gauge theory. The relevant part of
the Lagrangian is as follows:

L= %D2+ ED+gDP* Vp— p*m?p+- - (2.13

wherey‘j is the charge matrix of the chiral supermultiplet,
andm? is a supersymmetry-breaking term. After eliminating
D this becomes

L=—o*m’¢— %g%(ﬁ*w)z, (2.14
where

m2=m2+gé. (2.15
RG invariance of this result gives
B2, )= Bra(M2, )+ Be€V+0BY

= Br2(M?, .. )+ 2B4EV+QYBAM?, .. .),
(2.16

where

(2.17
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with Bg independent of. For a derivation of Eq(2.17), see _— B . w2 0 <0
Ref.[10]. What about the pitfall in the toy model which led (Bm2)'j(m*, ...)=|200% +2MM*g EZ+Y0_Y

us to introducen? We are saved by supersymmetry: if we

add a¢* term to Eq.(2.13, then supersymmetry would be <y 9 J|
broken, at the dimension 4 level; contrariwise, if we omit it, aY* ag| ")
then it will not be generated. Therefore, £8.16) is valid.

There is an important distinction betwe@fz(m?, ...)  Where
and B,2(m?, ... ), which both appear in Eq2.16), and de-
termine the mass renormalization witheliminated and un- O= ( Mgzi— pimn J ) 2.23
eliminated respectively. Becaugefunctions are determined 9g° ay'mnj’ '
by one particle irreducibl€lPl) diagrams 8,2 does not con-
tain any D-tadpole contributions; the renormalization of Yik=(m?) | YIk+ (m?)] Yk +(m2)k Yl (2.24
these is dealt with separately bg.. However, in the
D-eliminated formalism, there is nB,, and there is a dis- and(in the NSVZ scheme
tinct set of contributions t@,2 involving the four-point ver-
tex created by eliminatin®. It follows that 16m2XNSVZ= — 2g3 T m?Y2]. (2.29

(2.22

Once again we should emphasize that, whereas in a non-
' 21 Abelian theory Eq(2.22 holds in both theD-eliminated and
(2.18 D-uneliminated formalisms, in a theory with Abelian factors

) ) ) ) _ it is only true forD uneliminated.
since diagrams corresponding to one or more insertions of a |t js now easy to show that

D-tadpole-type contribution on thaternal line of a diagram
do not contribute to thgs function because the correspond- Br2(M2, .. )= B2(m?, .. ). (2.26
ing Feynman integral is factorizdd4].

Let us now define our notation fqr the calculation. \_NeThis follows simply by substituting fom? from Eq. (2.15
take an AbelianN=1 supersymmetric gauge theory with and then using the facts that
superpotential

Bra(M2, .. )= Bra(m?, .. )+ gVBm?, .. .)

V) YR+ () YR+ (K yih=0 (2.27
1 . 1
W(P)= nglk(Diq)jq)k+§M|Jq)iq)j : (219 by gauge invariance and

Tr(Y3=0 (2.28
and at one loop we have
for anomaly cancellation.
16m28 0 =g3Q=g°TI[)?] (2.203 The result forX, Eq. (2.25, applies in the NSVZ scheme,
g 1 - . . . .y
which is one of a class of schemes related by redefinitions of
g andM, the ramifications of which are described in Réfl.
Now X transforms non-trivially under these redefinitidif$,
but it can be shown using Eq&.27), (2.28 that X is un-

changed by the replacememt— m? in any member of this

In the spurion formalism the soft-breaking Lagrangian isclass of schemes; consequently £8.26 always applies.
given by We then find immediately from Eq$2.16), (2.18 that

. P :
167y =Pl=SYHY—20%(V?). (2.20D

D (2 —_ & s 2
%hijkq)i(qu)k B, . )= 2 Bm?, ). (2.29

Lsof= —[ f d?66

Now on dimensional grounds we may write

1 1
+ Eb'JCDiCDﬁ MWW, | +H.c.

2

B:=m2A1(9,Y,Y*)+hh*Ax(g,Y,Y*)+ MM*As(g,Y,Y*)
- [ oy rae el @2 (M + M*h)A(Q,Y.Y*), (2.30

where we have suppressedj( . . . ) indices for simplicity.
whereV is the vector superfield and/* the corresponding [In the conventional dimensional reductidRED) scheme,
field st_rength. The equivalent expressi_or_l in terms of compoz‘g§ will also depend on the scalar (mas€) m?, and this
nents is given in Eq(1.2). With the explicit all orders result - dependence, as we shall see, arises first at three loops. Our
for Bm2, we prove a remarkably simple result f@;.. The  three-loop result, therefore, will be in the DREBcheme
aforementioned exact result f@x, 2 is [6] [15].] Hence we have at once that
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FIG. 1. Feynman diagram for the one-loop calculation in com-

PHYSICAL REVIEW &2 125022

(a) (b)

ponents. Dashed lines are scalar propagators and the external field F|G. 2. Feynman diagrams for the one-loop calculation in su-

is aD. Blobs denotem? insertions.

ﬁg

Tr(YA)=2— (2.30)
g

So if we take theD- tadpole contributions t@@,, then the
terms proportional tan? will reduce to B4/9g if we replace
m? by g). This result is, in fact, clear from a diagrammatic

diagrams intdD self-energy graphs, and hence indeed gives
rise to By .

Ill. ONE LOOP CALCULATION

Here we describe the one-loop calculation,figf; this is
straightforward, of course. In a softly broken theory, fhée

perspace. Solid lines are chiral propagators and the external lines
are vector superfields. Blobs denatg insertions.

panding in powers ofm?, but this procedure would be cum-
bersome at higher loops; it is simpler to treat as an inser-
tion and introduce regulator masses only for those
propagators which are IR dangerous. This technique was de-
scribed in Ref[16], and is generally more convenient than
the alternative of “threading” a single momentum through
the diagran{17]. The pole result for a graph of any number
of loops, when all sub-divergences are subtractésl inde-
pendent of the precise details of how the IR divergences are
regulated. All this is, of course, well known to higher-loop
calculators but may, perhaps, be of some pedagogical inter-
est.

We see that to remove the quadratic divergence we must
have Try=0, and that at one loop

calculation may be carried out in components or using the
superfield spurion formalism. Usually, superfield techniques

(once masteredoffer a substantial reduction in labor com-

pared to component calculations; we will begin to suspect
from the one loop calculation, however, and confirm in the

next section, that this is not the case here.

In components there is a single diagram, shown in Fig. 1;

and we have

1

|

=—g(y)i;f d"k( J, ——(mz)J

Fig. 1=—g(y)ijf ddk( %

ddk
—aT - +qaT 2y -
g r<y>f & TITom) s
+finite terms, (3.1

where our integration measurd’k includes the usual

(27) "9 factor. Note that we present this Feynman integral

calculation(and subsequent oneis Euclidean space. In or-

der to extract the ultraviolet divergence from the logarithmi-

cally divergent term in Eq(3.1) we have made the replace-
ment

d’k
(K?+mp)2

d%

|

k4 (3.2

wheremg is an infrared(IR) regulator mass. Naturally we

could have directly evaluated the diagram without first ex-

g Tr(ym?). (3.3

Pe= 1672
In the superfield spurion calculation we have two graphs,
shown in Fig. 2.

The results are as follows:

d 4 2 (4)(0 0)
Fig. 2a= — gf d kf d*ev(e, 0)D Tr(y)—
1. _
+Tr(ym2)FD20202D25(4)(0— 6")|D?| g o
(3.9

while
Fig. 2b=—gTr(ym2)f ddkf d*60 626°V(0,0)D?

59—’ )_
X—

?l
K2 9=6'

. [d%
—gTr(ymz)f d*e 9292V(9,0)f7. (3.5

The first term from Eq(3.4) vanishes via Tp=0, and the
second may be reduced using the identity &) to give

d — =
Fig. 2a=gTr(ym2)JFJ d*ov(e,0)e?’’. (3.6

125022-4
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TABLE |. Results for two-loop Feynman diagrams.
a b c d e f
Fig.3 —-JS 0 8JS, —-4JS, 43S, —-4JS
(@) (b) (©

Fig.5 -JS, 2JS, 4JS, -2JS,

ties are collected in Appendix A. Note that we have omitted
graphs with a mass insertion on the leftmost vertex, where

the externaV is attached; these graphs, like Fig. 2b, do not

contribute to the logarithmic divergence, and are canceled by

the_ guadratic divergencéterms with an integrand involving

6%6°) from the graphs shown. We have also omitted a graph
(d) (e) (f)

like Fig. 3d, but with the mass insertion on the rightmost
vertex, because it also gives rise to a quadratic divergence
. o only. The divergent contributions & from each graph are
FIG. 3. Feynman diagrams for the two-loop calculation in su-jisted in Table I.

perspace. Solid lines are chiral propagators_ and internal wavy lines HereJ denotes the standard two loop momentum integral
are vector propagators. Blobs denat insertions. shown in Fig. 4, and also

If. we expand the exponential i-n E¢3.6), the quadraticgll.y S =TIM2Y?], S,=g?TiY3m?]. 4.1
divergent 6?6° term cancels Fig. 2b, while the remaining
term reproduces the component calculation, Gal). The calculation of] proceeds as follow$note that here
and in all subsequent integrals we subtract all subdiver-
IV. TWO LOOP CALCULATION gencex
In this section we discuss the two-loop calculationf d9kddq 2 ddk
in some detail. Calculations ¢ functions for soft-breaking :J 2 2,2, 202 2 J 2, 2.2
. . : - + +
parameters may be carried out in components or using the (k= @)"(ko4+mg)™ - 16m"e ] (k4 mp)
spurion formalism. Indeed, as mentioned earlier, in the case € 4 ye
of By, Bw and B2 the fact that the spurion diagrams are = ﬁ<1+ E—ye) - W( 1- 7)
only logarithmically divergent means that these quantities (4m)"e (4) €
have simple all-orders expressions in termsyoénd 3.
However, as we have emphasized, individual diagrams con-  _ 1 _ 3 E _ 4.2
tributing to B, are quadratically divergent. This means that (167%)%\ €* €

if, for example, we representld/* vertex in superspace by

hik?, then we cannot simply factor th# out, because it \We have ignored contributions of the forr, where
can be “hit” by a superspac® derivative; indeed, as is

clear from the one-loop calculation, the contribution when d
the 62 is not “hit” will not give a logarithmic divergence, |= f — 4.3
and must cancel. The simple relationship between a graph (k“+mg)

with ah''* and the corresponding one with a supersymmetric
Yukawa vertex which holds for the soft breakiggunctions  such as that from Fig. 3b, becaugehas no simple pole after
is thereby lost. Nevertheless, the spurion formalism may stilsub-divergence subtractioh? is the simplest possible ex-
be used. In this section we shall describe both the spurioample of afactorizedFeynman integral, which quite gener-
approach and the component calculation. Normally a sually give no simple pold14]. Subsequently we will ignore
perspace calculation would be expected to be more efficiergny graph which reduces to factorized form.
than the component version. In this case, however, we shall Thus using the simple pole given by
see that the advantages of the spurion calculation are by no
means so obvious. The fact that in componentsOhaser-
tion can only be on a scalar line considerably reduces the
number of diagrams in this case.
The two-loop diagrams in the spurion formalism are de-
picted in Fig. 3. Standard superspace manipulations are used
to reduce the graphs to basic momentum integrals, together
with a single remaining d*@; by power counting, the loga- J
rithmically divergent contributions come from terms with N0 g1, 4. Momentum integral for the two-loop calculation. The

@'s and @'s remaining in the integrand. Some useful identi- dot denotes a double propagator.

125022-5
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' AR TR
/ ! \
\ \ /
\\\ S 7
A B C
(a)

(©)
A3 e H :
/ \ /
\\ // \\
(b) (d) D E F

FIG. 5. Feynman diagrams for the two-loop calculation in com-  FIG. 6. Momentum integrals for the three-loop calculation. One
ponents. Dashed lines are scalar propagators, solid lines are chir@vo) dots denote a doublgriple) propagator. The two arrows in D
fermion propagators, double solid lines are gaugino propagators arienote contracted momenta.
internal wavy lines are vector propagators. Blobs denaténser-

tions. malism, which could be streamlined by systematic use of the
identities in Appendix A. Both these calculations were sen-

1 sitive to the check provided by E@2.31). The rest of the
Jsimple:m’ (4.4 calculation was done using components. Although the num-

ber of diagrams is large, the amount of algebra involved in

and recalling that to get the-loop contribution to theg ~ €ach diagram is not great. . .
function we need to multiply the Feynman diagram simple [N both component and superfield formalisms, every
pole result byL, we find that at two loops we have graph can be reduced to a sum of terms consisting of a prod-
uct of a group theory factor and one of a set of logarithmi-
1@WZBg= 29 T{Ym?]—4g T{Ym?y]+..., (4.5  cally divergent three loop graphs, which are shown in Fig. 6.
These graphs may be evaluated by the introduction of
so we see that in fact onl; is non-zero through this order. infrared regulator masses as describedJan the previous
The calculation may equally well be performed in the section. The results for the simple pole contributidater
component formalism. The relevant diagrams are shown igubtraction of subdivergendeare as follows:
Fig. 5. As we mentioned earlier, there are relatively few,
indeed fewer than in the spurion case. Their divergent con- o _ f 1 B . —— E 1
tributions are again listed in Table I, and upon adding we ™€ 3 (16723’ ™ 3 (1677)%’
find again the result of Eq4.5). It is apparent from Fig. 5

that there is no DRED or DREDdistinction at this order, c. .2 1 o, .21
because the vector boson couples only viadiiesW,, ver- SIMpIe™ 3 (1672)3¢’  —SMPe™ 3 (1672)3¢’
tex, which projects out the scalar. A further consistency
check is provided by E¢2.31); since E 4(3) 1 . 3 1
simple™ (1672)3¢’ simple™ — 4 (16m2)3¢"
16726,=g* T V2] - 2° T Y2y W]+ -+, (4.6) (167" (165 “5.0
we see that Eq(4.5) is indeed consistent with Eq2.31). We relegate details of the calculation to Appendix B. The

Finally, it is easy to verify that our result reproduces thefinal result may be written as follows:
relevant terms from the calculation ¢, (with D elimi-

nated presented in Ref43,18]. (The other two-loop calcu- 2 (53)DREU
lation of the softs functions[8] was performed witD un- (16772)3T
eliminated)

= —6(1672)°TI[Ym?y?]—4 T{WPY]
V. THREE LOOP RESULTS

5
N , . * + 212 _ 2 3
We have calculate@{®°*? in full. As we found in the o TTHHTYI+2 TP m* Y]~ 247¢(3) T WY~
previous section, the calculation in terms of component fields 2 * 193
is generally more straightforward than that using the spurion +12{(3)g"T{M*HY"+c.c]
formalism. In the case of terms proportional g )Y+ we —1447(3)g*MM* Tr{ V°] (5.2)
have performed both spurion and component calculations,
while for m*)3Y2-type terms we have used the spurion for- where[3]

125022-6
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o1 1 ‘ .
W= §Y2m2+§m2Y2+h2 .+2Y'pqvjpr(m2)fq
J
—8g°MM* (¥?)'}, (5.3
(a) (b)

HY =Y +4g2M (V) (5.4)

and

(16772)27’(2)ij:[_ijnYmpi_ZQZ(yz)pj 5in]Pnp
+2g°*TI YA(VY), (5.5
with (Y2)';=Y¥ Y, (h®)"=h™"h;,. We can now check
() (d)

them? terms in this result, using E.31). Replacingn? by

g), we obtain
FIG. 7. Feynman diagrams in superspace for the three-loop con-

9(16m2)3Tr(VAR) = 6X,+ 12X5+ 2%, tribution of the formm?Y“)), i.e. T;...5. Blobs denotem? inser-

tions.
—120°TYATYY], (5.6
VI. CONFORMAL ANOMALY TRAJECTORY

where The following set of equations provide an exact solution
Xl:ngklmPnl(yZ)meknp, to the renormalization group equations dr, h andm?:
X3=g*TH{ PY*], M= Mo%, (6.1a

—n2 22 . B

SR 50 Rk = — Mo, (6.1

in precise agreement with the result §8f>, given in[19], 1 dy

which for an Abelian theory is 2yi = = 2,271

(m?)';= Mol (6.10

16m2)3BPREP= g{3X, +6X5+ X4 — 605 T YA T Y41}
(167°)"Bg 9{3% 3t Xa =6 T AT ]} Moreover, these solutions indeed hold if the only source of

(5.8 supersymmetry breaking is the conformal anomaly, when
) o My is in fact the gravitino mass.
(Of course forBy there is no distinction between DRED and  Thjs set of soft breakings has generated considerable in-
DRED'.) Note that B¥°FE® would only differ from terest, but there are clear difficulties for the MSSM, since it
/}?)DRED’ by the inclusion of terms of the forg°m?Ti{ %]  is easy to see that sleptons are predicted to have negative
and g®M2TI[PY'?], arising from e-scalar mass insertions. (massj’-. Most s.tudles of this scenarlo'have resolved this
We have not calculated these explicitly because it is clea?“lemma by adding a constam%, presuming another source

they can be removed by a redefinitionrof, as follows: of supersymmetry breaking. A non-zegoalone is not an
alternative, unfortunately, as is easily seen from €q15);

5 2\ 2 the two selectrons, for example, have oppositely signed hy-
Sm?=—2 9 2?,12y2+a1 . m2y4 percharge, SO one qf them at least remains with nggative
167 6 (mass¥. This stumbling block may be overcome by intro-
5 ducing an extral; [20,21; for alternative treatments see
g ~ 2 2 Refs[l3,22|
* a2(16772)2 MRy, 6.9 It is immediately obvious that, given E¢6.1), there is a

RG invariant solution fog through two loopgfor Bg) given
where the first term was derived jd5]. It would be inter- by
esting to verify that the appropriate redefinition also renders

~ 26 2 A2
the three-loop contribution t@,,2 independent ofm?. 16m°¢=g[Mo| TNy 7], (6.2

A(3'):|'Dr;"’é|[|)¥’ let us cortnpar('a our result with the fgrm of since differentiating with respect t@ and using Eq(6.19
Be that we obtained in Ref10] (note that we did not  |eads at once to Eq€2.17), (4.5). Interestingly, however,

there distinguish DRED from DRED. We see that our re-  this result foré vanishesat leading and next-to-leading order,
sult Eq(52) indeed confirms the Conjectured form given In since one eas”y demonstrates that

Eqg. (4.10 of Ref.[10], and that the two then undetermined
constants are given by, =247(3) andv,=0. T Yy®]=0 (6.3
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-~ T~ ~
// /’/ // l/ \\ \\
\\ \\ U
\ N NN/ s
~ ‘y’ s
(@) (b) (a) (b) (©)

(©)

(d) (e) (d) (e) ()

FIG. 8. Feynman diagrams in components for the three-loop
contribution of the formm?Y*Y, i.e. T,.. 5.

and
T Yy@]=TI Y(»1)?]. (6.4

It is interesting to ask whether the trajectory can be extendec ) (h) (1)
beyond two loops, and whether it in fact continues to vanish
order by order. We have shown that there is indeed a gener
alization of Eq.(6.2) to at least three loopdor Bg), and that
at this order the result fof is non-zero.
Our result is as follows:

gDRED'

=(167%) "4 —31,—12/(3 ,
glmgp (10T A 0 ®) W

X (1= 2g°TI V2] THY D)}, (6.9

where
1 o
I, =TI YP3]— > (V)5 YMY PP
+29°T{ Y3P?]—2g*TH{ Y2 T V3P] (m) (n) (0)

1,=9%( V3 YMYmP™ +g°Tr{ V3P

+29*Tr[V°P]. (6.6)
It is easy to verify that the result of taking d/du of Eq.
(6.5 is identical to that obtained by substituting E¢8.1) in
Egs.(4.5), (5.2). This is a non-trivial result in that the num-
P) @ ®)

ber of candidate terms for inclusion in E®.5) is consider-
ably less than the number of distinct terms which arise when
Egs.(4.5), (5.2) are placed on the RG trajectory. We there- FIG. 9. Feynman diagrams in superspace for the three-loop con-
fore conjecture that the trajectory extends to all orders.  tribution of the formg?m?Y2y?, i.e. T,. 6.

It is natural to ask what the result f@* is in the NSVZ
scheme, which is obtaineg@t the relevant ordgmby the re-
definitions[4]

(167%)26M = — M g*{Tr[ PY?] - 20T (V?)?]}

1 . )
+§92h'lejk|(y2)Ji- (6.7

1
222 en— _ — 3 2
(167509 2g TPy~ It is straightforward to show that in order to obtain the re-

125022-8
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(s) (t)
(v) (w)
(y) (2)

(bb)
FIG. 9 (Continued.

sults, Eqs(2.17 and(2.3)), in the NSVZ scheme, we must
also redefin€ as follows:

(1672)%28¢=— %gZTr[ PY?)é—gTr m?PY)]. (6.9

The effect of this is to replace E¢6.5) by

gNSVZ
g/M |z=(16w2)*4{—4'1—125(3)('2
0
—2g°TH V21T Y]} 6.9
and Eq.(5.2) by
B(S)NSVZ
(167%)° = — =~ 4(167*) T Y’y
5

_ E(2 TIWPY]+TI[HH*Y])
—2492¢(3) TI{WY?]

PHYSICAL REVIEW D 62 125022

/M\ Vd Ve N
V2SN N N 7l ) \
N I {1 / \
V.Y,V D T T V.V, V B AN I
S vl \ !
\\ | | // \\ | \\ //
Lt
(a) (b) (©
MV AR
o 1 ! \\\ ¢ /P’ AN
{1 [
A : /I AN '\Nv‘\ : ; }
v Vo
\\ ! ! // \\ I \\ \\ /I //
it Savs
(d) () ()
-~
PAVANRN
[ R T
[
w8
[N N A
N N/ s
Sov”
(2)

FIG. 10. Feynman diagrams in components for the three-loop
contribution toTsg.

+12£(3)g’TI{M*HY3+c.c]
—144,(3)g*MM* TI[V°]. (6.10

It is disappointing that this expression does not immediately
suggest an all orders result. At this point it is worth recalling
that, while to connect the DREDand NSVZ schemes via
Eq. (6.7) we redefinedy andM, there exists also a redefini-
tion of Y [involving £(3)] which has the pleasant property of
extending to three loops the existence of filite: 1 theories
[23]. Unfortunately this redefinition disturbs Ed2.22),
which leads one to imagine that there might be a combined

/( )\ /<\ \\
1\ / \ I \\\ \
1Y IR A i Pt
\\ \ 7/ /l \ /,r’ ,’
\\\J//_// \<\__//
(a) (b)
-
//:
'vvv{ I A 1
\ | -————— -
(©) (d)

FIG. 11. Feynman diagrams in components for the three-loop
contribution toTg, T1g.
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- = -3~ TABLE II. Results for Fig. 9.
’ T\\ a/T \‘ “ />\‘ :
1 \
“’W{\ Vo wa ] "’W'\ 7 ) a —2E 3T, Ts
AN _Jl,’, \\JL_ yid ‘:\__,/’ b —4A %T4+ %T5+ Ts
—4A T
(a) (b) © c 5
d - 2C - T5_ T6
e —2(2A+B+2D) -1i1,
= N e ~aA CiTiT
I’ : e \‘ / N \\ g 4A —%TA
arA ANA 1 ~
\ : \ /’I ,' \ ,’," h 4A %T4_ %TS_TG
N N LS N i —4(4A—C—E) ~iT,
@ (e) ® i —4(2A—2D—-E) 3Ta—3Ts—Tg
k —8(A+D) iT4=3Ts—Ts
1
. [ —4A - ET4
< ~ T~ - —_ —
’,Js\ "\\\ l’ -: \\ -} \\ m A 2T4
’ "’ \ [} 1 \ ) 1 \ n 2B Ty
W"1\ A ) ""N(\ e "’M\ i 0 2A Ts
> rd ~ k4 AY 1 / \ ] 7
. —— —~ - \\J_’/ \\_!‘,/ p 2B '|'4
® (h) 0 a 4A iTa—3Ts—Ts
r 4A -1i1,
S —4(A+B) T,
t —2(2A+B+2D) Ts
FIG. 12. Feynman diagrams in components for the three-loopu 2A Ts
contribution toT; . \ —2A T,
w —-2B Ta
redefinition ofm?,Y that both preserves E.22 and sim-  x —4(A+B) T,
plifies ). We have not yet succeeded in constructing suchY —-2B T,
a transformation. z 2B T4
aa B Ty
bb -2B T,

VIl. FINAL REMARKS

We have presented a detailed, and we hope a reasonably _
self-contained, description of the calculation @f through ~ unification, then it does not have much effect at low ener-
three loops. It is intriguing that in the Abelian case we aredi€S, it should be remembered that this is an assumption, and
unable to express the renormalization of the theory comthat the MSSM has one more parameter than is commonly

pletely in terms of 3, and y, which, in the non-Abelian supposed.
case, suffice to describe the renormalization of both the
unbroken theory and also the theory with the standard
soft terms. Although there exists perturbatively a solution
related to the AMSB solution for the soft parameters, once This work was supported in part by the Leverhulme Trust.
again we are unable at the moment to extend this solution tg.P. was supported by the PPARC program. We thank John
all orders. Gracey for conversations.

The next step is obviously an extension of our calculation
to the case of a product gauge group including both Abelian
and non-Abelian factors, such as the MSSM; this is not a APPENDIX A: D-ALGEBRA IDENTITIES
trivial deduction from the results we have presented. Al-
though it is clear that i is assumed to be small at gauge

ACKNOWLEDGMENTS

In this appendix we list some identities that we found
useful in superspace calculations of contributionégo (An

P -1~ early reference for superspace calculations incorporating soft
A BN N breaking is Ref[24].) The soft terms given in Eq2.21) are
/ I \ / I \ : . : . i
A oy treated as insertions in the superfield diagrams and standard
\ \
N j ‘\D TABLE Ill. Results for Fig. 10(all multiplied by T).
(a) (b) atb c dt+e f g

FIG. 13. Feynman diagrams in components for the three-loofFig. 10 (C—4A—2B) 4(A—F) (2B+2F—4A) 2F C
contribution toT,,. Blobs denote gaugino mass insertions..
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TABLE V. Results for Fig. 12(all multiplied by T,,).

a b c d e f g h i
Fig.12 -A-B A -2B —-A 2B iB —-A 3(4A-B-2E) A-B-E
superspace manipulations may then be used to reduce super- 5,,D2 D2 [(p—q)2—2p201¢]§1+2q201¢)§1
graphs to ordinary momentum space integrals. It is conve- e
nient to denote the momentum space version of the super- +p2q26%621D?, D2, 51,
space covariant derivatives by
1[ 4 _ =81 (p—a)?r?+20%p-r —2p*q-r+p*q’]
D a:_ T ab{ea 1 . -
(Bp)e=3 905 P ll +terms iné,, 6;, (A8a)
(Boi = |~ — b (A1)
pl)a™ 5 — aat1 | — — _
2 90, 512Dr21Dr21[(p_Q)2_2p291ﬁ91+ 20%61p6,
where +p2g267651D7\ D7, 81,
Paa=Put o =10 (A2) =814 (p—q)%r?—20°p-r+2p%q-r+p°g?]
We then have the fundamental supersymmetry algebra +termsinéy, 0. (A8D)
{(Dps) (Bpr)id =2 B (A3)
pllart=pllal 9 Paa Note that the right-hand sides of Eq#&7a), (A7b) are re-
i lated byg« —q, and similarly those of Eq4A8a), (A8b)
We find are related by < —r.
D2,02= —e"Ph, D2 gi=—e 1P, (Ad)
and moreover APPENDIX B: THREE LOOP DETAILS
D§15§19§§§D315§1512: ef1bor+ 02@2’ In this Appendix we give a complete graph-by-graph de-

scription of the three-loop calculation. We start by giving a

5§1D§19§5§5§1D§1512= o (61601+0280) (A5) list of the distinct tensor structures involved:

where
810= (0, - 6,). (AB)

We also have

81,D5:1D%16"PD 2 D}, 81,= 814 (p—)°—2p? 0146, ;7 K N
_ / /
+2020,p6,+ p?q?6363], At | ot )
(A73) AN AN
(a) (b)

512D§15319291p91D§1551512: 814 (p+0)2+2p?6,46,

+2026,p 0+ p2q26267].

(70 N\
/
H \
Finally, 'vvv‘\ 'vvv{ H
\
TABLE V. Results for Fig. 14all multiplied by T,3). Mo \v/
()

(d)

Fig. 14 -C —(A+B+2D) 2C 2(A-B) FIG. 14. Feynman diagrams in components for the three-loop
contribution toT; 3.

a b c d
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TABLE VI. Results for Fig. 15(all multiplied by T44).

a b c d e f
Fig. 15  8(E+3C—A+3B) 4(B—C) -2C  8(B—A) 8(3B+iE-A) -2C
g h
Fig. 15 4(A+B+2D) 8(A—B)
T1= (Y)Y jm(m?))™, example, Fig. 8d. Because the scalar fields are complex, this
o diagram represents two distingty the usual rulesFeynman
T2= (Y3 YMY a(m) ™Y diagrams] The totals of Figs. 7, 8 are manifestly identical,
which is a good check on our spurion rules.
To=TrY2Y2m2Y], T,=0?TrY?m?Y3], The results from Figs. 9,10,12,14,15 are given in Tables
, II-VI respectively.
Ts=g2Y Yima(m?) ™ (VA" The results from Fig. 11 are given by

Te=0?Y Yimn(m)™(YH)N,  T,=g*Tm?Y%], 1 1
, Fig. 11a= — =ATy, Fig. 11b= =BT,
Te=g* TIV2ITIMEY3],  To= YK, hyg PP, | 2 4

Tio=TH{Y?h?Y], Ty=g?Ti[h?)?],

1 1
Fig. 1lc=— 7 ATy, Fig. 11d=5BTy.  (B4)

— 2M . ikl )3y _ 2 * 24,3
Tio= @M Y5, Tas= g MM YY), The results from Fig. 13 are
T=g*MM*TI[V°]. (B1)

Fig. 13a=(E—2A)[T1o+(T10)*],
We now give a list of diagrams contributing to these tensor
structures, with the exception df,, for which there are a
very large number of separate diagrams; note that when
is replaced byg), T, and onlyT, produces Tr)®], so that
we can in fact infer the coefficient of; in our final result B .
via Eq. (2.3). We did, however, perform the explici, stituting the S|_mp!e pole results fok,B, ... F from Eq.
calculation, and indeed obtained the expected result. (5.1, and multiplying by 3(for three loops

We begin with a comparison between superspace and _
// I//
v A
\ \
N AN
(b) (©)

Fig. 13b=B[T1»+(T12)*]. (B5)

The final total is obtained by combining the tables, sub-

component formalisms. The results from Fig(tfie super-
space calculationare

1
Fig. 7a= = 5(B+2D)(T1+Ty), Fig. 7b=AT;,

1 3
Fig. 7= 5CT,, Fig. 7¢= 7BT;, (B2)
,(,/\:‘}\\ ’,’ /,
while from Fig. 8(the component calculati¢rwe find ,’ / |
\
1 \\ \\ \\\
Fig. 8a=—§(B+C+2D)(T1+T2), ~—
(d) ©) ty)

Fig. 8b=(A—F)T4,

’ AN / §
Fig. 8c=FT,, Fig. 8d=;C(T1+2T2), MM/ ) ] \
1

(2) (h)

[Here and elsewhere, we combine diagrams which clearly FIG. 15. Feynman diagrams in components for the three-loop
give identical results, up to symmetry factors. Consider forcontribution toT .

3
Fig. 8e= ZBT3' (B3)
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B(;)DRED’
(16m?)3 ———
g

3
=7T,+4T,— §T3+[1O— 24£(3)]T,—12T5

5
+ 1601~ 34(3)]Te— 1677~ 12Tg— 5 To— 2Ty

PHYSICAL REVIEW D 62 125022

+8[1-34(3)]T11—2[5-64(3) [(T1o+ T

+16T ;53— 8[13—187(3)]T 14, (B6)

which can easily be recast into the form given in Eg2).
(As indicated earlier, we have suppressed details ofTthe
computation).
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