17 research outputs found

    The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study

    Get PDF
    Background: Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy. Methods: Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored. Results: A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays. Conclusions: IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. METHODS: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. FINDINGS: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. INTERPRETATION: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Comparison of daily weight gain and fattening characteristics between buffalo and Holstein male calves with different diets

    No full text
    This experiment was carried out over 180 days for comparison of daily weight gain and carcass characteristics of male buffalo (BW=200.8±8.00 Kg, days from birth day=360±28) calves to Holstein male calves (BW=195.2± 10 Kg, days from birth day= 240± 22) with different diets. The 27 male buffalo calves and 27 Holstein male calves after an adaptation period and health treatment (3 weeks) allotted in factorial design (2×3) based on completely randomized design with 18 treatments. Experimental diets used to applying three treatments (three levels) of NDF, including low NDF (LNDF), medium NDF (MNDF) and high NDF (HNDF), so that final prices of these diets were different. All of these experimental calves weighted by 21 days intervals after a fasting for 12h and fed twice daily at 09.00 and 21.00 with Total Mix Ration (TMR) ad-libitum. At the end of this experiment, three replicate from each treatment were slaughtered and used for carcass analysis. The result from this experiment shows that: There was no significant difference in initial body weight in the treatments of buffalo and Holstein male calves. Both Holstein and buffalo calves have the higher FBV and best FC in LNDF diet. There was no significant difference between MNDF and HNDF in buffalo calves treatments. The proportion of abdominal fat and fat of carcass in LNDF treatment was higher. The carcass efficiency and cost of meat production in better quality per Kg was higher and lower in buffalo calves respectively especially in treatments with higher NDF

    The chemical composition and in vitro digestibility evaluation of almond tree (Prunus dulcis D. A. Webb syn. Prunus amygdalus; var. Shokoufeh) leaves versus hulls and green versus dry leaves as feed for ruminants

    No full text
    Almond, (Prunus dulcis D. A. Webb syn. Prunus amygdalus) is a species belonging to the Rosaceae family (Sfahlan et al. 2009). The state of California in the USA is the major producer of almond; however, its production is widely distributed (Wijerante et al. 2006) and there is increasing interest to produce almond and its by-products worldwide. Approximately 2,112,815 metric ton of almonds with shell is produced globally with Iran contributing about 110,000 metric ton (FAO 2007). Almond is a midsize tree with fruit that can grow up to ten meters tall (Chen et al. 2010). The fruit is made of hulls, shell and kernel. Drying almond hulls results in approximately (kg-1 DM) 250 g nut, 500 g hulls and 250 g shell (Aguilar et al. 1984; Fadel 1999).The current study aimed to evaluate the chemical composition and in vitro digestibility of almond tree (Prunus dulcis D. A. Webb syn. Prunus amygdalus; var. Shokoufeh) leaves versus hulls, and green versus dry leaves as feed for ruminants. The fresh green almond hulls (GAH) and leaves (GAL) were harvested and spread under a shade to dry. Dry almond leaves (DAL) were collected from under the trees where as dry almond hulls (DAH) were collected 4 weeks after harvesting the fresh samples. The chemical composition of substrates was determined using standard approaches and the metabolisable energy (ME), in vitro dry matter (DMD) and in vitro organic matter (OMD) digestibility were measured using the in vitro gas production (GP) technique. The GAL contained 81 g crude protein (CP) kg-1 DM while DAH contained 103 g CP kg-1 DM. The CP was higher (P = 0.0003) in dry (leaves and hulls) than in green (leaves and hulls) samples. The ash content ranged from 99.2 to 181.5 g kg-1 DM in DAH and DAL, respectively, (P = 0.0041). The ether extract content ranged from 27 for DAH to 65 g kg-1 for DAL (P = 0.0018). The acid detergent fibre and neutral detergent fibre content ranged from 185 to 304 and 444 to 620 g kg-1 DM (P = 0.04), for GAL and DAH, respectively. The DAH had the highest (P = 0.0001) GP24 and GP96. The DAH had the highest (P = 0.0001) potential GP (i.e., b), while the GP rate was highest for GAL and GAH (P = 0.034), ME was highest for DAH (P = 0.0001), and in vitro OMD was highest for DAH (P = 0.0001). The highest DMD (P = 0.0001) values were obtained with DAH followed by GAL, DAL and GAH, respectively. It can be concluded that almond hulls and leaves have a good nutritional potential to cover the maintenance nutrient requirements of small ruminants. Almond hulls and leaves can also be used as supplement to low quality mature pasture and/or crop residues. However, more studies are warranted to better characterize these feeds in in vivo animal feeding trials
    corecore